The mass of a string is 20 g and it has a length of 3.2 m. Assuming that the tension in the string is 2.5 N, what will be the wavelength of a travelling wave that is created by a sinusoidal excitation of this string with a frequency of 20 Hz. Provide the wavelength in units of m. Please note: You do not include the units in your answer. Just write in the number.

Answers

Answer 1
Answer:

Answer:

The wavelength of the wave is 1 m

Explanation:

Given;

mass of the string, m = 20 g = 0.02 kg

length of the string, L = 3.2 m

tension on the string, T = 2.5 N

the frequency of the wave, f = 20 Hz

The velocity of the wave is given by;

v = \sqrt(T)/(\mu) {}

where;

μ is mass per unit length = 0.02 kg / 3.2 m

μ = 6.25 x 10⁻³ kg/m

v = \sqrt{(T)/(\mu) } \n\nv = \sqrt{(2.5)/(6.25*10^(-3)) } \n\nv = 20 \ m/s

The wavelength of the wave is given by;

λ = v / f

λ = (20 m/s )/ (20 Hz)

λ = 1 m

Therefore, the wavelength of the wave is 1 m


Related Questions

A sprinter starts from rest and accelerates to her maximum speed of 10.5 m/s in a distance of 11.0 m. (a) What was her acceleration, if you assume it to be constant? 0 Incorrect: Your answer is incorrect. Units are required for this answer. seenKey 5.01 m/s^2 (b) If this maximum speed is maintained for another 96.3 m, how long does it take her to run 107.3 m?
Two long parallel wires are a center-to-center distance of 1.30 cm apart and carry equal anti-parallel currents of 2.40 A. Find the magnitude of the magnetic field at the point P which is equidistant from the wires. (R = 5.00 cm).
Suppose you are pushing on a crate across a floor as shown below. Assume the friction force is 47.0 N. How much time will it take for the crate to reach 6.0 m/s if it started from rest? Assume the weight of the crate is 2058 N. (250 N force applied)(Question is no longer a priority but i’d like to know the answer and how it’s found) pls don’t scam i’m serious man i need to know
7) Straws work on the principle of the outside atmospheric pressure pushing the fluid (for example water) up the straw after you have lowered the pressure at the top of the straw (in your mouth). Assuming you could create a perfect vacuum in your mouth, what is the longest vertical straw you could drink water from?
(PLEASE HELP ITS DUE SOON ILL MARK BRAINLIEST AND 5 STARS & PLEASE SHOW WORK!!)(And the answer is not 44 I already tried that and it doesn’t start with 4 either)

A boy throws a snowball straight up in the air with an initial speed of 4.50 ft/s from a position 4.00 ft above the ground. The snowball falls straight back down in to a 6 inches of snow. The snowball feels a deceleration of 100 m/s2 upon impact with the snow bank before coming to rest. (a) When does the snowball hit the top of the snow bank? (b) How far from the ground does the snowball come a rest?

Answers

Answer:

a) 0.658 seconds

b) 0.96 inches

Explanation:

v=u+at\n\Rightarrow 0=4.5-32.1* t\n\Rightarrow (-4.5)/(-32.1)=t\n\Rightarrow t=0.14 \s

Time taken by the ball to reach the highest point is 0.14 seconds

s=ut+(1)/(2)at^2\n\Rightarrow s=4.5* 0.14+(1)/(2)* -32.1* 0.14^2\n\Rightarrow s=0.315\ ft

The highest point reached by the snowball above its release point is 0.315 ft

Total height the snowball will fall is 4+0.315 = 4.315 ft

s=ut+(1)/(2)at^2\n\Rightarrow 4.315=0t+(1)/(2)* 32.1* t^2\n\Rightarrow t=\sqrt{(4.315* 2)/(32.1)}\n\Rightarrow t=0.518\ s

The snowball will reach the bank at 0.14+0.518 = 0.658 seconds after it has been thrown

v=u+at\n\Rightarrow v=0+32.1* 0.518\n\Rightarrow v=16.62\ ft/s

v^2-u^2=2as\n\Rightarrow s=(v^2-u^2)/(2a)\n\Rightarrow s=(0^2-16.62^2)/(2* -100* 3.28)\n\Rightarrow s=0.42\ ft

The snowball goes 0.5-0.42 = 0.08 ft = 0.96 inches

A 1kg ball is dropped (from rest) 100m onto a spring with spring constant 125N/m. How much does the spring compress?

Answers

Answer:

3.95 m

Explanation:

m = 1 kg, h = 100 m, k = 125 N/m

Let the spring is compressed by y.

Use the conservation of energy

potential energy of the mass is equal to the energy stored in the spring

m x g x h = 1/2 x ky^2

1 x 9.8 x 100 = 0.5 x 125 x y^2

y^2 = 15.68

y = 3.95 m

What electric field strength would store 12.5 JJ of energy in every 6.00 mm3mm3 of space?

Answers

To develop this problem we will apply the concepts related to the potential energy per unit volume for which we will obtain an energy density relationship that can be related to the electric field. From this formula it will be possible to find the electric field required in the problem. Our values are given as

The potential energy,  U = 13.0 J

The volume,  V = 6.00 mm^3 = 6.00*10^(-9)m^3

The potential energy per unit volume is defined as the energy density.

u = (U)/(V)

u= ((13.0 J))/((6.00*10^(-9) m^3))

u= 2.167109 J/m^3

The energy density related with electric field is given by

u = (1)/(2) \epsilon_0 E^2

Here, the permitivity of the free space is

\epsilon_0 = 8.85*10^-{12} C^2/N \cdot m^2

Therefore, rerranging to find the electric field strength we have,

E = \sqrt{(2u)/(\epsilon_0)}

E = \sqrt{(2(2.167109))/(8.85*10^(-12))}

E = 2.211010 V/m

Therefore the electric field is 2.21V/m

Final answer:

To calculate the electric field strength that would store 12.5 Joules of energy in every 6.00 mm^3 of space, we use the energy density formula. We firstly find the energy density and input it into the formula to solve for the electric field strength. The result is approximately 6.87 X 10^6 N/C.

Explanation:

The energy stored in an electric field is given by the formula U = 1/2 ε E^2. Here, U is the  energy density (energy per unit volume), E is the electric field strength, and ε is the permittivity of free space.  

Given that the energy stored U is 12.5 joules, and the volume is 6.00 mm^3 or 6.00X10^-9 m^3, the energy density (U) can be computed as 12.5 J/6.00X10^-9 m^3 = 2.08X10^12 Joule/meter^3.

We can solve the formula for E (electric field strength): E = sqrt ((2U)/ε). Substituting the value of ε (8.85 × 10^-12 m^-3 kg^-1 s^4 A^2), we can find E to be approximately 6.87 X 10^6 N/C.

Learn more about Electric Field Strength here:

brainly.com/question/1812671

#SPJ3

A mysterious object with a surface area of 0.015 m2, volume of 0.000125 m3, density of 100 kg/m3, specific heat of 100 J/(kgK), thermal conductivity of 2 W/(mK), with an unknown initial temperature was placed in a fluid with a density of 50 kg/m3, specific heat of 70 J/(kgK), thermal conductivity of 0.1 W/(mK), at a temperature of 400K. The heat transfer coefficient is given to be 10 W/(m2K). After 10 seconds, the temperature of the object is measured to be 380K. Determine the object's initial temperature.

Answers

Answer:

The object's initial temperature is 333.6 K

Explanation:

We first assume that the liquid can only transfer heat to the object through convective heat transfer method.

Let T₀ = the initial temperature of the object

T = temperature of the object at anytime.

The rate of heat transfer from the liquid to the object is given as

Q = -hA (T∞ - T)

T∞ = temperature of the fluid = 400 K

A = Surface area of the object in contact with the liquid = 0.015 m²

h = Convective heat transfer coefficient is given to be = 10 W/(m²K)

The rate of heat gained by the object is given by

mC (d/dt)(T∞ - T)

m = mass of the object = ρV

ρ = density of the object = 100 kg/m³

V = volume of the object = 0.000125 m³

m = ρV = 100 × 0.000125 = 0.0125 kg

C = specific heat capacity of the object = 100 J/(kgK)

The rate of heat loss by the liquid = rate of heat gain by the object

-hA (T∞ - T) = mC (d/dt)(T∞ - T)

(d/dt)(T∞ - T) = - (dT/dt) ( Since T∞ is a constant)

- mC (dT/dt) = -hA (T∞ - T)

(dT/dt) = (hA/mC) (T∞ - T)

Let s = (hA/mC)

(dT/dt) = -s (T - T∞)

dT/(T - T∞) = -sdt

Integrating the left hand side from T₀ (the initial temperature of the object) to T and the right hand side from 0 to t

In [(T - T∞)/(T₀ - T∞)] = -st

(T - T∞)/(T₀ - T∞) = e⁻ˢᵗ

(T - T∞) = (T₀ - T∞)e⁻ˢᵗ

s = (hA/mC) = (10 × 0.015)/(0.0125×100) = 0.12

T = 380 K at t = 10 s

T₀ = ?

T∞ = 400 K

st = 0.12 × 10 = 1.2

(380 - 400) = (T₀ - 400) e⁻¹•²

(-20/0.3012) = (T₀ - 400)

(T₀ - 400) = - 66.4

T₀ = 400 - 66.4 = 333.6 K

Hope this Helps!!!

We know that there is a relationship between work and mechanical energy change. Whenever work is done upon an object by an external force (or non-conservative force), there will be a change in the total mechanical energy of the object. If only internal forces are doing work then there is no change in the total amount of mechanical energy. The total mechanical energy is said to be conserved. Think of a real-life situation where we make use of this conservation of mechanical energy (where we can neglect external forces for the most part). Describe your example and speak to both the kinetic and potential energy of the motion.

Answers

Answer:

* roller skates and ice skates.

* roller coaster

Explanation:

One of the best examples for this situation is when we are skating, in the initial part we must create work with a force, it compensates to move, after this the external force stops working and we continue movements with kinetic energy, if there are some ramps, we can going up, where the kinetic energy is transformed into potential energy and when going down again it is transformed into kinetic energy. This is true for both roller skates and ice skates.

Another example is the roller coaster, in this case the motor creates work to increase the energy of the car by raising it, when it reaches the top the motor is disconnected, and all the movement is carried out with changes in kinetic and potential energy. In the upper part the energy is almost all potential, it only has the kinetic energy necessary to continue the movement and in the lower part it is all kinetic; At the end of the tour, the brakes are applied that bring about the non-conservative forces that decrease the mechanical energy, transforming it into heat.

Name at 2 areas of physics that make video games possible

Answers

Answer:

projectiles

electromagnetic

Answer:

Explanation:

física cuántica y  Quantum Moves