Draw a ray diagram for an object placed more than two focal lengths in front of a converging lens.

Answers

Answer 1
Answer:

Answer:

Explanation:

There is a convex lens M N is placed. An object AB is placed at a distance more than two focal lengths of the lens.

A ray of light is starting from point A and parallel to the principal axis, then after refraction it goes from the focus.

Another ray which goes through the optical centre of the lens becomes undeviated after refraction.

The two refracted rays meet at the point A', So A'B is the image of AB.

The nature of image is real, inverted and diminished.


Related Questions

At a given instant the bottom A of the ladder has an acceleration aA = 4 f t/s2 and velocity vA = 6 f t/s, both acting to the left. Determine the acceleration of the top of the ladder, B, and the ladder’s angular acceleration at this same instant.
An electric generator contains a coil of 140 turns of wire, each forming a rectangular loop 71.2 cm by 22.6 cm. The coil is placed entirely in a uniform magnetic field with magnitude B = 4.32 T and initially perpendicular to the coil's plane. What is in volts the maximum value of the emf produced when the loop is spun at 1120 rev/min about an axis perpendicular to the magnetic field?
On a touchdown attempt, 95.00 kg running back runs toward the end zone at 3.750 m/s. A 113.0 kg line-backer moving at 5.380 m/s meets the runner in a head-on collision. If the two players stick together, a) what is their velocity immediately after collision? b) What is the kinetic energy of the system just before the collision and a moment after the collision?
A 0.500-kg mass suspended from a spring oscillates with a period of 1.18 s. How much mass must be added to the object to change the period to 2.07 s?
A car is decelerating at the rate of 2 km/s square. If its initial speed is 66 km/s, how long will it take the car to come to a complete stop?

A sheet of aluminum alloy is cold-rolled 33 percent to a thickness of 0.096 in. If the sheet is then cold-rolled to a final thickness of 0.061 in., what is the total percent cold work done

Answers

Answer:

 The total percent cold work done is 36.46%

Explanation:

Let initial metal thickness = T

Final metal thickness = t

The percent cold work done = WC

Then

%Wc = (T - t)/T × 100

% Wc = ( 0.096 - 0.061 )/0.096 ×100

Total %WC = 36.46%

Answer:

The total percent of cold work is 57.34%

Explanation:

Let x the initial thickness of the sheet. After 33% of cold working, the thickness is 0.096 in. Then:

x - 0.33x = 0.096

x = 0.143 in

the final thickness is equal to 0.061 in. The percent of cold work done is:

percent-of-cold-work=((initial-thickness)-(final-thickness))/(initial-thickness)*100

percent-of-cold-work=(0.143-0.061)/(0.143) *100=57.34%

Why are certain things obligations of citizenship instead of responsibilities? atleast 5 sentences please

Answers

Answer:

Please find the answer in the explanation

Explanation:

Responsibilities of citizens are those things citizens are to take care of.

While obligations are those things that are compulsory for the citizens to observe and adhere to.

Why are certain things obligations of citizenship instead of responsibilities?

1.) Because of law and order of the community. It is mandatory for all citizens to obey the law of the land.

2.) Because of the progress and peaceful coexistence of the citizens in the community.

3.) Because of the protection of constitution of the land

4.) To support and defend the constitution

5.) To maintain orderliness and eschew violence.

Two wires A and B with circular cross-section are made of the same metal and have equal lengths, but the resistance of wire A is four times greater than that of wire B. What is the ratio of the radius of A to that of B

Answers

Answer:

r₁/r₂ = 1/2 = 0.5

Explanation:

The resistance of a wire is given by the following formula:

R = ρL/A

where,

R = Resistance of wire

ρ = resistivity of the material of wire

L = Length of wire

A = Cross-sectional area of wire = πr²

r = radius of wire

Therefore,

R = ρL/πr²

FOR WIRE A:

R₁ = ρ₁L₁/πr₁²   -------- equation 1

FOR WIRE B:

R₂ = ρ₂L₂/πr₂²   -------- equation 2

It is given that resistance of wire A is four times greater than the resistance of wire B.

R₁ = 4 R₂

using values from equation 1 and equation 2:

ρ₁L₁/πr₁² = 4ρ₂L₂/πr₂²

since, the material and length of both wires are same.

ρ₁ = ρ₂ = ρ

L₁ = L₂ = L

Therefore,

ρL/πr₁² = 4ρL/πr₂²

1/r₁² = 4/r₂²

r₁²/r₂² = 1/4

taking square root on both sides:

r₁/r₂ = 1/2 = 0.5

Final answer:

The ratio of the radius of wire A to the radius of wire B is 1/2.

Explanation:

The resistance of a wire is given by the formula R = ρl/A, where R is resistance, ρ is resistivity, l is length, and A is the cross-sectional area of the wire. When the wire has a circular cross-section, the area can be calculated by the formula A = πr². The resistance of the wire then becomes: R = ρl/(πr²). If the resistance of wire A is four times that of wire B, we can set up the equation 4RB = RA. Substituting the expression for resistance, we get 4(ρl/(πrB²)) = ρl/(πrA²). Simplifying, we find that the ratio of the radius of wire A to the radius of wire B is one-half, or rA/rB = 1/2.

Learn more about Resistance and Radius Ratio here:

brainly.com/question/31381856

#SPJ3

While David was riding his bike around the circular cul-de-sac by his house, he wondered if the constant circular motion was having any effect on his tires. What would be the best way for David to investigate this?A.
Measure the circumference of the tire before and after riding.
B.
Measure the total distance traveled on his bike and divide this by how long it took him.
C.
Measure the wear on his treads before and after riding a certain number of laps.
D.
Time how long it takes him to ride 5 laps around his cul-de-sac.

Answers

Answer:

C.

Measure the wear on his treads before and after riding a certain number of laps.

Answer:

Measure the wear on his treads before and after riding a certain number of laps.

Explanation:

By riding in a circular motion the inside of the tire will be in contact with the road more than the outside of the tire. Thus, to see if the constant circular motion had any effect on his tires David should measure the tread depth on both the inside and the outside of the tires before the experiment and measure the inside and the outside of the tires (at the same location on the tires) after the experiment. Then he can compare the tread loss on the inside of the tire to the tread loss on the outside of the tire.

A Venturi tube may be used as the inlet to an automobile carburetor. If an inlet pipe with a diameter of 2.0 cm diameter narrows to diameter of 1.0 cm, determine the pressure drop in the constricted section for an initial airflow of 3.0 m/s in the 2-cm section? (Assume air density is 1.25 kg/m

Answers

The pressure drop is equal to 80.99 Pa

Given information:

d1 = 2 cm = 0.02 m

d2 = 1 cm = 0.01 m

v = 3 m/s

p = 1.25 kg/m^3

Here we use Bernoulli's principle for the Venturi Tube:

Calculation of pressure drop:

P1 - P2 = ((v^2* p)/ 2)* ((A1^2/ A2^2)-1)\n\nP1 - P2 = \Delta P = ((v1^2* p)/ 2)* ((A1^2/ A2^2)-1)

Now the following formula for area calculation should be used:

A1 = (\pi* d1^2)/ 4 = (\pi* (0.02 m)^2)/ 4 = 0.00031 m^2\n\nA2 = (\pi* (0.01 m)^2)/ 4 = 0.000079 m^2\n\n\Delta P = ((3 m/s)^2 *1.25 kg/m^3)/ 2) * ((0.00031 m^2)^2/(0.000079 m^2)^2)-1)

= 80.99

Find out more information about the  Pressure here: brainly.com/question/356585?referrer=searchResults

Answer:

the pressure drop is equal to 80.99 Pa

Explanation:

we have the following data:

d1 = 2 cm = 0.02 m

d2 = 1 cm = 0.01 m

v = 3 m/s

p = 1.25 kg/m^3

ΔP = ?

For the calculation of the pressure drop we will use Bernoulli's principle for the Venturi Tube:

P1 - P2 = ((v^2*p)/2)*((A1^2/A2^2)-1)

where A = area

P1 - P2 = ΔP = ((v1^2*p)/2)*((A1^2/A2^2)-1)

for the calculation of the areas we will use the following formula:

A1 = (pi*d1^2)/4 = (pi*(0.02 m)^2)/4 = 0.00031 m^2

A2 = (pi*(0.01 m)^2)/4 = 0.000079 m^2

ΔP = ((3 m/s)^2*1.25 kg/m^3)/2)*((0.00031 m^2)^2/(0.000079 m^2)^2)-1) = 80.99 N/m^2 = Pa

What is it called when a Rock forms due to heat and pressure in the earth?

Answers

It is called Metamorphic rocks!!