Gasline is solid by the liter in many countries. How many liters are required to fill a 12.0-gal gas tank?

Answers

Answer 1
Answer:

Answer : The volume required to fill the gas tank is, 45.42 liters

Explanation :

Conversion used for gallon to liters are:

1\text{ gallon}=3.785\text{ liter}

As we are given the volume of gas tank in gallon is, 12.0 gal

Now we have to determine the volume of gas tank in liters.

As, 1 gallon = 3.785 liter

So, 12.0 gallon = \frac{12.0\text{ gallon}}{1\text{ gallon}}* 3.785\text{ liter}=45.42\text{ liter}

Therefore, the volume required to fill the gas tank is, 45.42 liters


Related Questions

How much is a share in namsek worth as a percent of a share in oxd group
For the experiments from 1-3 with the same temperature change, what other parameters are the same at the initial reaction conditions?a. mmol HCl total mL solution b. mmol NaOH Initial concentration of NaOH c. mL H2O Initial concentration of HCl
hich of the following statements is true about cocaine? multiple choice cocaine is a powerful central nervous system opiate. cocaine may cause users to become overweight. cocaine hydrochloride powder produces a higher rate of dependence than crack cocaine.
How many s’mores can you make from the following combinations? What is the limiting reagent?
Explain what the police siren sounds like to Jane. Explain what the police siren sounds like to John. Explain why the police siren sounds different between Jane and John.

The information below describes a redox reaction.Cr3+(aq)+2Cl-(aq)---->Cr(s)+Cl2(s)
2Cl-(aq)--->Cl2(g)+2e-
Cr3+(aq)+3e- ---->Cr(s)

What is the final, balanced equation for this reaction?
1.) 2cr3+(aq)+6Cl-(aq) ------> 2Cr(s)+3Cl2(g)
2.) 2Cr3(aq)+2Cl-(aq)+6e- --->Cl2(g)+2Cr(s)
3.) Cr3+(aq)+6Cl-(aq)+3e- ---->2Cr(g)+3Cl2(g)
4.) Cr3+(aq)+2Cl-(aq)------>Cr(s)+Cl2(g)

Answers

Answer: option 1)  2Cr3+(aq)+6Cl-(aq) ------> 2Cr(s)+3Cl2(g)

Explanation:

1) Write the oxidation half-reaction:

2Cl^-(aq)---\ \textgreater \ Cl_2(g)+2e^-

2) Write the reduction half-raction:

Cr^(3+)(aq)+3e^(-)---\ \textgreater \ Cr(s)

3) Multiply each half-reaction by the appropiate coefficient to equal the number of electrons of both half-reactions.

6Cl^(-)(aq)---\ \textgreater \ 3Cl_2(g)+6e^(-) 2Cr^(3+)(aq)+6e^(-)---\ \textgreater \ 2Cr(s)

4) Add both half-reactions

2Cr^(3+)+6Cl^(-)(aq)---\ \textgreater \ 2Cr(s) +3Cl_2(g)

And that is the answer. You can count the atoms and charges on every side and check they are equal.

Answer:

A

Explanation:

got it correct on edge

Most wine is prepared by the fermentation of the glucose in grape juice by yeast: C6H12O6(aq) --> 2C2H5OH(aq) + 2CO2(g) How many grams of glucose should there be in grape juice to produce 725 mLs of wine that is 11.0% ethyl alcohol, C2H5OH (d=0.789 g/cm3), by volume?

Answers

Answer:

123.41 g

Explanation:

Given that the ethyl alcohol produced is 11.0 % by volume.

It means that 1000 mL contains 110 mL of ethyl alcohol

Given that the volume is:- 725 mL

So,

Volume of ethyl alcohol = (110)/(1000)* 725\ mL = 79.75 mL

Given that:- Density = 0.789 g/cm³ = 0.789 g/mL

So, Mass = Density*Volume = 0.789* 79.75\ g = 62.92 g

Calculation of the moles of ethyl alcohol as:-

Molar mass of ethyl alcohol = 46.07 g/mol

The formula for the calculation of moles is shown below:

moles = (Mass\ taken)/(Molar\ mass)

Thus,

Moles= (62.92\ g)/(46.07\ g/mol)

Moles=1.37\ mol

According to the reaction:-

C_6H_(12)O_6_((aq))\rightarrow 2C_2H_5OH_((aq)) +2CO_2_((g))

2 moles of ethyl alcohol is produced when 1 mole of glucose reacts

Also,

1.37 moles of ethyl alcohol is produced when (1)/(2)* 1.37 mole of glucose reacts

Moles of glucose = 0.685 Moles

Molar mass of glucose = 180.156 g/mol

Mass = Moles*Molar mass = 0.685* 180.156\ g = 123.41 g

What is an extensive property? *A property that changes if temperature changes
A property that will NOT change if temperature changes
A property that changes if the amount of substance changes
A property that does NOT change if the amount of substance changes
Help :( pls

Answers

Answer:

A property that changes if the amount of substance changes

Explanation:

An extensive property is a property that depends on the amount of matter in a sample.

Final answer:

An extensive property changes if the amount of substance changes. For instance, mass and volume are extensive properties as they would vary depending on the amount of substance.

Explanation:

An extensive property is a property that changes if the amount of substance changes. For example, mass and volume are extensive properties. If you have two separate samples of a substance, each with a different amount, their mass and volume would be different. On the other hand, the melting point or boiling point of the substance, which are examples of intensive properties, would not change regardless of the amount of substance.

Learn more about extensive property here:

brainly.com/question/12937142

#SPJ12

What other reactions is taking place?

Answers

Hi! I don’t see a picture, did you forget to include one?

Consider the titration of a 73.9 mL sample of 0.13 M HC2H3O2 with 6.978 M NaOH. Ka(HC2H3O2) = 1.8x10-5 Determine the initial pH before any NaOH is added. Express your answer using two decimal places.Consider the titration of a 46.6 mL sample of 0.078 M HC2H3O2 with 1.135 M NaOH. Ka(HC2H3O2) = 1.8x10-5 Determine the volume of added base required to reach the equivalence point. Answer in units of milliliters.

Consider the titration of a 17.2 mL sample of 0.128 M HC2H3O2 with 0.155 M NaOH. Ka(HC2H3O2) = 1.8x10-5 Determine the pH at 0.46 mL of added base.

Answers

Answer:

1. pH = 2,82

2. 3,20mL of 1,135M NaOH

3. pH = 3,25

Explanation:

The buffer of acetic acid (HC₂H₃O₂) is:

HC₂H₃O₂ ⇄ H⁺ + C₂H₃O₂⁻

The reaction of HC₂H₃O₂ with NaOH produce:

HC₂H₃O₂ + NaOH → C₂H₃O₂⁻ + Na⁺ + H₂O

And ka is defined as:

ka = [H⁺] [C₂H₃O₂⁻] / [HC₂H₃O₂] = 1,8x10⁻⁵ (1)

1. When in the solution you have just 0,13M HC₂H₃O₂ the concentrations in equilibrium will be:

[H⁺] = x

[C₂H₃O₂⁻] = x

[HC₂H₃O₂] = 0,13 - x

Replacing in (1)

[x] [x] / [0,13-x] = 1,8x10⁻⁵

x² = 2,34x10⁻⁶ - 1,8x10⁻⁵x

x² - 2,34x10⁻⁶ + 1,8x10⁻⁵x  = 0

Solving for x:

x = - 0,0015 (Wrong answer, there is no negative concentrations)

x = 0,0015

As [H⁺] = x = 0,0015 and pH is -log [H⁺], pH of the solution is 2,82

2. The equivalence point is reached when moles of HC₂H₃O₂ are equal to moles of NaOH. Moles of HC₂H₃O₂ are:

0,0466L × (0,078mol / L) = 3,63x10⁻³ moles of HC₂H₃O₂

In a 1,135M NaOH, these moles are reached with the addition of:

3,63x10⁻³ moles × (L / 1,135mol) = 3,20x10⁻³L = 3,20mL of 1,135M NaOH

3. The initial moles of HC₂H₃O₂ are:

0,0172L × (0,128mol / L) = 2,20x10⁻³ moles of HC₂H₃O₂

As the addition of NaOH spent HC₂H₃O₂ producing C₂H₃O₂⁻. Moles of C₂H₃O₂⁻ are equal to moles of NaOH and moles of HC₂H₃O₂ are initial moles - moles of NaOH. That means:

0,46x10⁻³L NaOH × (0,155mol / L) = 7,13x10⁻⁵ moles of NaOH ≡ moles of C₂H₃O₂⁻

Final moles of HC₂H₃O₂ are:

2,20x10⁻³ - 7,13x10⁻⁵ = 2,2187x10⁻³ moles of HC₂H₃O₂

Using Henderson-Hasselbalch formula:

pH = pka + log₁₀ [C₂H₃O₂⁻] / [HC₂H₃O₂]

Where pka is -log ka = 4,74. Replacing:

pH = 4,74 + log₁₀ [7,13x10⁻⁵] / [2,2187x10⁻³ ]

pH = 3,25

I hope it helps!

What are the names of the following compounds: FeCl HNO NaSO SO

Answers

Answer:

FeCl: Ferric Chloride (also called iron chloride), comes from Fe (ferrum, or iron), and Cl (Chlorine)

HNO: Nitroxyl, from N (Nitrogen), and the acidic nature of a radical ending in -yl.

NaSO:  Sodium sulfate, Na (Sodium), S (Sulfur), O (Oxygen).

SO: Sulfur monoxide (Mono-One), O (Oxygen) and S (Sulfur).