Answer:
10% is a share in NAMSEK worth as a percentage of a share in ODX Group Inc., in year 4
The share of NAMSEK in year 4 is around $ shares (as given from the above table). Hence the value of one share will be $2.5/share
The share of ODX Group Inc., in year 4 is around $ shares (as given from the above table). Hence the value of one share is $
Therefore a share in NAMSEK worth as a percentage of a share in ODX Group Inc., in year 4 will be
= 0.1 or 10 %
There are two types of chemical compound one is covalent compound and other is ionic compound, covalent compound formed by sharing of electron and ionic compound formed by complete transfer of electron. Therefore, the name and formula of the compound made of magnesium and fluorine is Magnesium fluoride and MgF₂ respectively.
Chemical Compound is a combination of molecule, Molecule forms by combination of element and element forms by combination of atoms in fixed proportion.
An ionic compound is a metal and nonmetal combined compound. Ionic compound are very hard. They have high melting and boiling point because of strong ion bond.
The name and formula of the compound made of magnesium and fluorine is Magnesium fluoride and MgF₂ respectively. Magnesium fluoride is an ionic compound.
Therefore, the name and formula of the compound made of magnesium and fluorine is Magnesium fluoride and MgF₂ respectively.
To learn more about chemical compound, here:
#SPJ6
Answer:Magnesium fluorine
MgF2
Explanation:
God knows
A student pipets 5.00 mL of a 5.103 M aqueous NaOH solution into a 250.00 mL volumetric flask and dilutes up to the mark with distilled water. the final molarity of the dilute solution is 0.102 M.
From the question given above, the following data were obtained:
Volume of stock solution (V1) = 5 mL
Molarity of stock solution (M₁) = 5.103 M
Volume of diluted solution (V₂) = 250 mL
Molarity of diluted solution (M₂) =?
The molarity of the diluted solution can be obtained by using the dilution formula as illustrated below:
M₁V₁ = M₂V₂
5.103 × 5 = M2 × 250
25.515 = M2 × 250
Divide both side by 250
M2 = 25.515 / 250
M2 = 0.102 M
Thus, the molarity of the diluted solution is 0.102 M.
To know more about molarity here
#SPJ12
Answer:
0.102 M.
Explanation:
From the question given above, the following data were obtained:
Volume of stock solution (V1) = 5 mL
Molarity of stock solution (M1) = 5.103 M
Volume of diluted solution (V2) = 250 mL
Molarity of diluted solution (V2) =?
The molarity of the diluted solution can be obtained by using the dilution formula as illustrated below:
M1V1 = M2V2
5.103 × 5 = M2 × 250
25.515 = M2 × 250
Divide both side by 250
M2 = 25.515 / 250
M2 = 0.102 M
Thus, the molarity of the diluted solution is 0.102 M.
The dependence of the power of the reaction rate on the concentration is called the order of the reaction. The order of the reaction is the first order.
The initial rate method is the estimation of the order of the reaction by the initial rates of the reactants and products and by performing the reaction several times by measuring the rate.
The reaction is given as,
The rate of reaction can be given as:
Here the variables x, y and z are orders respective to the reactant concentration and k is the rate constant.
Value of x with respect to A:
Value of y with respect to B:
Value of z with respect to C:
Substituting value of x = 1 and y = 2 in the above equation:
Therefore option b. with respect to C = 1, the order of the reaction is first-order.
Learn more about the order of reaction here:
Answer:
B. First order, Order with respect to C = 1
Explanation:
The given kinetic data is as follows:
A + B + C → Products
[A]₀ [B]₀ [C]₀ Initial Rate (10⁻³ M/s)
1. 0.4 0.4 0.2 160
2. 0.2 0.4 0.4 80
3. 0.6 0.1 0.2 15
4. 0.2 0.1 0.2 5
5. 0.2 0.2 0.4 20
The rate of the above reaction is given as:
where x, y and z are the order with respect to A, B and C respectively.
k = rate constant
[A], [B], [C] are the concentrations
In the method of initial rates, the given reaction is run multiple times. The order with respect to a particular reactant is deduced by keeping the concentrations of the remaining reactants constant and measuring the rates. The ratio of the rates from the two runs gives the order relative to that reactant.
Order w.r.t A : Use trials 3 and 4
Order w.r.t B : Use trials 2 and 5
Order w.r.t C : Use trials 1 and 2
we know that x = 1 and y = 2, substituting the appropriate values in the above equation gives:
z = 1
Therefore, order w.r.t C = 1
Answer:
Based on the difference in solubility one can perform the process of purification of the benzoic acid contaminated with sodium chloride. The benzoic acid does not get soluble in cold water, while the sodium chloride is soluble in cold water.
Thus, for separation, the supplementation of cold water can be done into the mixture in the experiment of purifying benzoic acid from sodium chloride. In the process, the mixture is placed on the ice bath and is stirred well, in the end, the solution is filtered. The filtrate contains sodium chloride and on the filter paper pure benzoic acid is collected.
Answer:
4
Explanation:
Light refracts when it passes through something transparent at an angle so that eliminates the other 3.
or put differently
Light refracts whenever it travels at an angle into a substance with a different refractive index (optical density)
Answer:
45, 34, 36
Explanation:
The atomic number of Selenium is 34 and the atomic number is 79 also the atom has gained two electron denoted by superscript -2
number of neutrons = mass number - atomic number = 79 - 34 = 45
number of proton = atomic number = 34
number of electron = 34 + 2 = 36. In an atom the number of proton is always equal to number of electron if the atom is neutral but this Se atom has gain two so the number of electron will exceed the number of proton by 2.
The Se ion has 34 protons, 45 neutrons and 36 electrons.
The mass number (A) is given by the sum of the protons and neutrons:
A = protons + neutrons = 79
From the Periodic Table, we can see that the chemical element Selenium (Se) has an atomic number (Z) of 34, which is equal to the number of protons of a chemical element:
Z = protons = 34
Thus, we calculate the number of neutrons as the difference between A and Z:
neutrons = A - Z = 79 - 34 = 45
In a neutral atom (without electric charge), the number of electrons is equal to the number of protons. Since Se ion has 34 protons and a charge of -2, it has 34 electrons to be neutral and then it gained 2 electrons, so the number of electrons is equal to:
electrons = protons + 2 = 34 + 2 = 36
You can learn more about mass number, atomic number and subatomic particles here: