Calculate the molarity of each solution.a. 0.38 mol of lino3 in 6.14 l of solution
b. 72.8 g c2h6o in 2.34 l of solution
c. 12.87 mg ki in 112.4 ml of solution

Answers

Answer 1
Answer: Q1)
molarity is defined as the number of moles of solute in 1 L solution 
the number of moles of LiNO₃ - 0.38 mol
volume of solution - 6.14 L
since molarity is number of moles in 1 L 
number of moles in 6.14 L - 0.38 mol
therefore number of moles in 1 L - 0.38 mol / 6.14 L = 0.0619 mol/L
molarity of solution is 0.0619 M

Q2)
the mass of C₂H₆O in the solution is 72.8 g
molar mass of C₂H₆O is 46 g/mol 
number of moles = mass present / molar mass of compound
the number of moles of C₂H₆O - 72.8 g / 46 g/mol 
number of C₂H₆O moles - 1.58 mol
volume of solution - 2.34 L
number of moles in 2.34 L - 1.58 mol
therefore number of moles in 1 L - 1.58 mol / 2.34 L = 0.675 M
molarity of C₂H₆O is 0.675 M

Q3)

Mass of KI in solution - 12.87 x 10⁻³ g
molar mass - 166 g/mol
number of mole of KI = mass present / molar mass of KI
number of KI moles = 12.87 x 10⁻³ g / 166 g/mol = 0.0775 x 10⁻³ mol
volume of solution - 112.4 mL 
number of moles of KI in 112.4 mL - 0.0775 x 10⁻³ mol
therefore number of moles in 1000 mL- 0.0775 x 10⁻³ mol / 112.4 mL x 1000 mL
molarity of KI - 6.90 x 10⁻⁴ M
Answer 2
Answer:

The molarities of the given solutions: (a). 0.38 mol of LiNO₃ in 6.14 L of solution has a molarity of 0.062 M. (b). 72.8 g of C₂H₆O in 2.34 L of solution has a molarity of 0.675 M. (c). 12.87 mg of KI in 112.4 mL of solution has a molarity of 0.000688 M.

To calculate the molarity (M) of a solution, you can use the formula:

Molarity (M) = moles of solute / volume of solution (in liters)

a. 0.38 moles of LiNO₃ in 6.14 L of solution:

Molarity (M) = 0.38 moles / 6.14 L = 0.062 M

b. 72.8 grams of C₂H₆O (ethyl alcohol) in 2.34 L of solution:

First, you need to convert grams to moles using the molar mass of C₂H₆O.

Molar mass of C₂H₆O = 2(12.01 g/mol) + 6(1.01 g/mol) + 1(16.00 g/mol) = 46.08 g/mol

Now, calculate moles of C₂H₆O:

moles = 72.8 g / 46.08 g/mol = 1.58 moles

Molarity (M) = 1.58 moles / 2.34 L = 0.675 M

c. 12.87 mg of KI in 112.4 mL of solution:

First, convert milligrams to grams (1 g = 1000 mg):

12.87 mg = 12.87 g (since 12.87 mg / 1000 = 0.01287 g)

Now, convert mL to liters (1 L = 1000 mL):

112.4 mL = 0.1124 L

Calculate moles of KI:

Molar mass of KI = 39.10 g/mol (for K) + 126.90 g/mol (for I) = 166.00 g/mol

moles = 0.01287 g / 166.00 g/mol = 7.75 × 10⁻⁵ moles

Molarity (M) = (7.75 × 10⁻⁵ moles) / 0.1124 L = 0.000688 M

So, the molarities of the solutions are as follows:

a. 0.062 M

b. 0.675 M

c. 0.000688 M

To know more about moles:

brainly.com/question/34302357

#SPJ3


Related Questions

If the molecule C6H12 does not contain a double bond, and there are no branches in it, what will its structure look like?
Need help ASAP!!!!!!!
Please help I need help fast
If sodium arsenite is Na3AsO3, the formula for calcium arsenite would be
What is the molarity of a solution prepared from 25.0 grams of methanol (CH3OH, density = 0.792 g/mL) with 100.0 milliliters of ethanol (CH3CH2OH)? Assume the volumes are additive.

Which one of the following compounds will NOT be soluble in water? Which one of the following compounds will NOT be soluble in water? LiOH BaSO4 NaNO3 MgCl2 K2S

Answers

Answer:

BaSO_(4) will be not soluble in water

Explanation:

LiOH is a strong base. Hence it gets completely dissociated in aqueous solution.

NaNO_(3) is a strong electrolyte. Hence it gets completely dissociated in aqueous solution.

MgCl_(2) is a strong electrolyte. Hence it gets completely dissociated in aqueous solution.

K_(2)S is a strong electrolyte. Hence it gets completely dissociated in aqueous solution.

BaSO_(4) is a sparingly soluble salt. Hence it is not dissociated and hence dissolved in water. This is due to the fact that both Ba^(2+) and SO_(4)^(2-) ions are similar in size. Hence crystal structure of BaSO_(4) is quite stable. Hence BaSO_(4) is reluctant to undergo any dissociation in aqueous solution.

How many significant digits are in 89015?

Answers

Answer:5

Explanation:

A battery can provide a current of 4.60 A at 3.40 V for 2.50 hr. How much energy (in kJ) is produced? 1st attempt kJ Energy

Answers

Answer:

The energy produced equals 140.760 kJ

Explanation:

The relation between power, current and voltage is

Power=Current* Voltage

Applying the given values in the relation above we get

Power=4.60* 3.40=15.64W

Now Since Power=(Energy)/(Time)\n\nEnergy=Power* Time

Again applying the calculated values we get

Energy=15.64* 2.50* 3600=140760Joules=140.76kJ

What is the molarity if 24 moles of solute are dissolved into 6 L of solution?

Answers

Answer:

Molarity= 4M

Explanation:

n= CV

24= C×6,

C= 24/6 = 4M

Answer:4M

Explanation:

Number of moles=24

Volume=6L

Molarity=number of moles ➗ volume

Molarity=24 ➗ 6

Molarity=4M

What is the correct formula for phosphorus pentachloride? (a) PCl5 (b) P5Cl (c) P(ClO)5 (d) PO4Cl (e) PCIO

Answers

Answer:

(a) PCl_5

Explanation:

Hello,

In this case, such nomenclature expresses the amount of both phosphorous and chlorine atoms via prefixes for the sub indexes of each atom into the molecule, thus, as phosphorous is prefixless one infers that there is just one phosphorous and five chlorides since the prefix for such atom is penta. Therefore, the correct formula is:

PCl_5

Hence, the answer is (a)

Best regards.

Answer:

The correct formula for phosphorus pentachloride is a) PCl5

What is the final step in the scientific method

Answers

Conclusion
 
Hope this helps!
Once a hypothesis has been formed, it must be tested. This is done by conducting a carefully designed and controlled experiment. The experiment is one of the most important steps in the scientific method, as it is used to prove a hypothesis right or wrong, and to formulate scientific theories.