is the number of total atoms on the left side of a balanced equation always equal to the number of total atoms on the right side of the equation?

Answers

Answer 1
Answer:

Yes, because conservation of mass

Answer 2
Answer: Yes each and every timee,

Related Questions

What would be considered more dilute? sweet tea or unsweetened tea
Draw the structure of a compound with the molecular formula CgH1002 that exhibits the following spectral data. (a) IR: 3005 cm-1, 1676 cm-1, 1603 cm-1 (b) H NMR: 2.6 ppm (singlet, I = 3H), 3.9 ppm (singlet, I = 3H), 6.9 ppm (doublet, I = 2H), 7.9 ppm (doublet, I = 2H) (c) 13C NMR: 26.2, 55.4, 113.7, 130.3, 130.5, 163.5, 196.6 ppm ?
1.6x10^23 lead atoms. Find the weight in grams
A volume of 40.0 mLmL of aqueous potassium hydroxide (KOHKOH) was titrated against a standard solution of sulfuric acid (H2SO4H2SO4). What was the molarity of the KOHKOH solution if 16.2 mLmL of 1.50 MM H2SO4H2SO4 was needed? The equation is 2KOH(aq)+H2SO4(aq)→K2SO4(aq)+2H2O(l)
What is the atomic number of an element containing 12 neutrons and having a mass number of 24

Which statements about freshwater sources are true? Check all that apply.Only about 3 percent of Earth's water is fresh water.
Most of the fresh water on Earth is groundwater.
About 75 percent of the fresh water on Earth is frozen in ice sheets.
The largest source of usable fresh water is groundwater.
More fresh water is in the atmosphere than in rivers and lakes.

Answers

Answer: A., C., and D.

Explanation: On Edge!!

I will keep all the true statements bold, so you can understand that those are true.

Answer:

Only about 3 percent of Earth's water is fresh water.

Most of the fresh water on Earth is groundwater.

About 75 percent of the fresh water on Earth is frozen in ice sheets.

The largest source of usable fresh water is groundwater.

More fresh water is in the atmosphere than in rivers and lakes.

Balance the following equation and list the coefficients in order from left to right.SF4 + __ H2O → _H2SO3 + HE

Answers

Vascular tissue

From Wikipedia, the free encyclopedia

Jump to navigationJump to search

Cross section of celery stalk, showing vascular bundles, which include both phloem and xylem.

Detail of the vasculature of a bramble leaf.

Translocation in vascular plants

This article is about vascular tissue in plants. For transportation in animals, see Circulatory system.

Vascular tissue is a complex conducting tissue, formed of more than one cell type, found in vascular plants. The primary components of vascular tissue are the xylem and phloem. These two tissues transport fluid and nutrients internally. There are also two meristems associated with vascular tissue: the vascular cambium and the cork cambium. All the vascular tissues within a particular plant together constitute the vascular tissue system of that plant.

The cells in vascular tissue are typically long and slender. Since the xylem and phloem function in the conduction of water, minerals, and nutrients throughout the plant, it is not surprising that their form should be similar to pipes. The individual cells of phloem are connected end-to-end, just as the sections of a pipe might be. As the plant grows, new vascular tissue differentiates in the growing tips of the plant. The new tissue is aligned with existing vascular tissue, maintaining its connection throughout the plant. The vascular tissue in plants is arranged in long, discrete strands called vascular bundles. These bundles include both xylem and phloem, as well as supporting and protective cells. In stems and roots, the xylem typically lies closer to the interior of the stem with phloem towards the exterior of the stem. In the stems of some Asterales dicots, there may be phloem located inwardly from the xylem as well.

Between the xylem and phloem is a meristem called the vascular cambium. This tissue divides off cells that will become additional xylem and phloem. This growth increases the girth of the plant, rather than it

Suppose you have been given the task of distilling a mixture of hexane + toluene. Pure hexane has a refractive index of 1.375 and pure toluene has a refractive index of 1.497. You collect a distillate sample which has a refractive index of 1.441. Assuming that the refractive index of the hexane + toluene mixture varies linearly with mole fraction, what is the mole fraction of hexane in your sample?

Answers

Answer:

0.4590

Explanation:

How the refractive index of the hexane + toluene mixture varies linearly with mole fraction, it means that the mole fraction is the fraction that each pure index contribute for the mixture index, so, calling xh the mole fraction of hexane and xt the mole fraction of toluene:

1.375xh + 1.497xt = 1.441

And, xh + xt = 1 (because there are only hexane and toluene in the mixture), so xt = 1- xh

1.375xh + 1.497(1-xh) = 1.441

1.375xh + 1.497 - 1.497xh = 1.441

-0.122xh = -0.056

xh = -0.056/(-0.122)

xh = 0.4590

Which factor is likely to impact the possible number of compounds?

Answers

Answer:

The correct answer is the tendency of all the elements to react with every other element.  

Explanation:

A component in which two or more elements are bonded chemically leads to the production of a compound. A compound refers to a pure component as it comprises elements that are in their pure state. The formation of a compound takes place when the elements react with each other based upon their reactivity.  

For example, the element chlorine is deficient of one electron and the element sodium exhibits one additional electron. Thus, chlorine easily reacts with the sodium in order to obtain stability. Therefore, the formation of sodium chloride takes place. Hence, it can be concluded that the tendency of all the elements to react with every other element is the condition, which is possible to influence the probable number of compounds.

the impact of possible number of compounds is the ability of all elements to react with every other atoms

Lithium (Li) has a charge of +1, and oxygen has a charge of -2. Which is the chemical formula?

Answers

Considering the formation of a chemical formula, the chemical formula is Li₂O.

Ionic compounds

Cations (positivelycharged ions) and anions (negatively charged ions) combine to form ionic compounds, which must be electrically neutral. Therefore, the cations and anions must combine in such a way that the net charge contributed by the total number of cations exactly cancels the net charge contributed by the total number of anions.

Formation of a chemical formula

To form the chemical formula:

  • It is first necessary to place the chemical symbol of the element that is a cation, and then the negative part (anion).
  • Since the net charge of the compound formed must be zero (that is, add zero), when cations and anions with different charges are joined, it is necessary to cross them and place them as subscripts of the other element. In this way, balanced loads are obtained, that is, the algebraic sum is equal to zero.

Chemical formula in this case

Lithium (Li) has a charge of +1, and oxygen has a charge of -2. Taking into account the above, the chemical formula is Li₂O.

Answer:

Lithium formula=Li+

Oxygen formula=O2(2-)

Explanation:

Quick note: These kinds of formula are really easy to google. Next time, google the chemical name, include the charge and include "formula" and you should get the answer.

All the elements beyond uranium, the transuranium elements, have been prepared by bombardment and are not naturally occurring elements. The first transuranium element neptunium, NpNp, was prepared by bombarding U−238U−238 with neutrons to form a neptunium atom and a beta particle. Part A Complete the following equation: 10n+23892U→?+?01n+92238U→?+? Express your answer as a nuclear equation.

Answers

Answer:

¹₀n+ ²³⁸₉₂U → ²³⁹₉₃Np + ⁰₋₁e

Explanation:

Key statement;

The first transuranium element neptunium, NpNp, was prepared by bombarding U−238U−238 with neutrons to form a neptunium atom and a beta particle.

This is the beta particle;  ⁰₋₁e

¹₀n+ ²³⁸₉₂U → Np + ⁰₋₁e

The mass number of Np;

1 + 238 = Np + 0

Np = 239

The atomic number of Np;

0 + 92 = Np + (-1)

92 + 1 = Np

Np = 93

The equation is given as;

¹₀n+ ²³⁸₉₂U → ²³⁹₉₃Np + ⁰₋₁e