The dilution of each tube are as follows;
For each time a dilution is further diluted;
The dilution ratio is; 1 : 11; In essence, 0.5 mL of agent was added to 5.0 mL of nutrient broth.
Read more;
Answer:
Tube 2: 8.26 * 10^-3; Tube 4: 6.83 * 10^-5
Explanation:
In the serial dilutions for MIC test, the volume of nutrient broth in each tube should be equal: 5.0 mL. And the volume of agent in each dilution should also be similar: 0.5 mL.
The serial dilutions was as following:
Answer:
The correct answer is Pu, 234.
Explanation:
In the given case, let us consider the reactant as X. Now the mass number (balanced) on both the sides will be,
Mass of X = Mass of Molybdenum + Mass of Tin + Mass of neutrons
M = 1 * 103 + 1 * 131 + 2 * 0
M = 234
Now the atomic number (balanced) on both the sides,
Atomic number of X = Atomic number of Molybdenum + Atomic number of Tin + Atomic number of neutrons
A = 1*42 + 1*50 + 2*1
A = 94
The atomic number 94 is for the element Plutonium, whose symbol is Pu. Thus, the reactant is 234-Pu.
Answer:
123.41 g
Explanation:
Given that the ethyl alcohol produced is 11.0 % by volume.
It means that 1000 mL contains 110 mL of ethyl alcohol
Given that the volume is:- 725 mL
So,
Volume of ethyl alcohol = = 79.75 mL
Given that:- Density = 0.789 g/cm³ = 0.789 g/mL
So, Mass = Density*Volume = = 62.92 g
Calculation of the moles of ethyl alcohol as:-
Molar mass of ethyl alcohol = 46.07 g/mol
The formula for the calculation of moles is shown below:
Thus,
According to the reaction:-
2 moles of ethyl alcohol is produced when 1 mole of glucose reacts
Also,
1.37 moles of ethyl alcohol is produced when mole of glucose reacts
Moles of glucose = 0.685 Moles
Molar mass of glucose = 180.156 g/mol
Mass = Moles*Molar mass = = 123.41 g
Answer: Lithium and Ethanol
Explanation: As lithium and ethanol both have a density of under
1.000g/ml, they can be supported by the water. Blood and Magnesium are denser than the water and will therefore sink as the water can not support it them.
Answer:
Electrons do not follow circular orbits around the nucleus
Explanation:
Bohr's model of the atom is a combination of elements of quantum theory and classical physics in approaching the problem of the hydrogen atom. According to Neils Bohr, stationary states exist in which the energy of the electron is constant. These stationary states were referred to as circular orbits which encompasses the nucleus of the atom. Each orbit is characterized by a principal quantum number (n). Energy is absorbed or emitted when an electron transits between stationary states in the atom.
Sommerfeld improved on Bohr's proposal by postulating that instead of considering the electron in circular orbits, electrons actually orbited around the nucleus in elliptical orbits, this became a significant improvement on Bohr's model of the atom until the wave mechanical model of Erwin Schrödinger was proposed.
Answer:
Electrons do not follow circular orbits around the nucleus
Explanation:
Answer:
(C3H8) produces 660 g of CO2 and 360 g of H2O
Explanation:
The balanced chemical equation for the combustion of propane (C3H8) is:
C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(g)
This equation tells us that for every molecule of propane (C3H8) that reacts with 5 molecules of oxygen (O2), 3 molecules of carbon dioxide (CO2) and 4 molecules of water (H2O) are produced.
So, if we have 220. g of propane (C3H8), we can find the amount of CO2 and H2O produced by using the mole ratio from the balanced equation:
1 mole C3H8 reacts with 5 moles of O2 to produce 3 moles of CO2 and 4 moles of H2O
We can find the number of moles of C3H8 by dividing the mass by the molar mass of C3H8 (44 g/mol):
220 g / 44 g/mol = 5 moles C3H8
So, the number of moles of CO2 and H2O produced can be found by multiplying the number of moles of C3H8 by the mole ratio:
3 moles CO2 = 3 moles CO2/1 mole C3H8 * 5 moles C3H8 = 15 moles CO2
4 moles H2O = 4 moles H2O/1 mole C3H8 * 5 moles C3H8 = 20 moles H2O
Finally, we can convert the number of moles of CO2 and H2O to grams by multiplying by their molar masses (44 g/mol for CO2 and 18 g/mol for H2O):
15 moles CO2 * 44 g/mol = 660 g CO2
20 moles H2O * 18 g/mol = 360 g H2O
So, the combustion of 220 g of propane (C3H8) produces 660 g of CO2 and 360 g of H2O.
Answer:
Chloroplast, Lysosome