b) The final rms molecular speed will be the same for both gases.
c) The final average kinetic energy of a molecule will be the same for both gases.
Answer:
a,c are correct
Explanation:
a) On mixing two gases the final temperature of both the gases becomes the same. The heat will flow from high temp. gas to lower temp gas till the temp of both gases become equal (Thermal equilibrium). This is correct.
b) The rms speed of the molecule is inversely proportional to its molar mass so the final rsm will not be the same. This is incorrect.
c) The average kinetic energy of the system will remain the same. Hence this is also correct.
Asnwer : Empirical formula of a compound is :
Given information : C = 64.3 % , H = 7.2 % , O = 28.5 %
Step 1 : Convert the given percentage (%) to grams.
Explanation : Let the total mass of the compound be 100 grams.
Mass of C = 64.3 g
Mass of H = 7.2 g
Mass of O = 28.5 g
Step 2 : Convert the grams of each compound to moles.
Molar mass of C = 12.0g/mol
Molar mass of H = 1.0 g/mol
Molar mass of O = 16.0g/mol
Moles of C = 5.36 mol
Moles of H = 7.2 mol
Moles of O = 1.78 mol
Step 3 : Find the mole ratio of C , H and O
Mole ratio is calculated by dividing the mole values by the smallest value.
Mole of C = 5.36 mol , Mole of H = 7.2 mol , Mol of O = 1.78 mol
Out of the three mole values , mole value of O that is 1.78 mol is less , so we divide all the mole values by 1.78 mol.
C : H : O = 3 : 4 : 1
So empirical formula of the compound is or
Answer:
[K2SO4] = 4,75x10⁻⁷M ; [K⁺] = 9.50x10⁻⁷M ; [SO4⁻²] = 4,75x10⁻⁷M
SO4⁻²: 0.045ppm ; K⁺: 0.037ppm
[SO4⁻²] = 4,70x10⁻⁷ F
Explanation:
Determine the equation
K2SO4 → 2K⁺ + SO4⁻²
Each mole of potassium sulfate generates two moles of potassium cation and one mole of sulfate anion
Molar mass K2SO4: 174.26 g/m
Moles of K2SO4: grams / molar mass
2.07x10⁻⁴g / 174.26 g/m = 1.18x10⁻⁶ moles
Molarity: Moles of solute in 1 L of solution
1.18x10⁻⁶ moles / 2.5 L = 4,75x10⁻⁷M (K2SO4)
K⁺ : 4,75x10⁻⁷M . 2 = 9.50x10⁻⁷M
SO4⁻²: 4,75x10⁻⁷ M
1 mol of K2SO4 has 2 moles of K and 1 mol of SO4
1.18x10⁻⁶ moles of K2SO4 has 1.18x10⁻⁶ moles of SO4 and 2.37x10⁻⁶ moles of K.
1.18x10⁻⁶ moles of SO4⁻² are 1.13x10⁻⁴ grams (moles. molar mass)
2.37x10⁻⁶ moles of K are 9.26x10⁻⁵ grams (moles. molar mass)
These grams are in 2.5 L of water, so we need μg/mL to get ppm
2.5 L = 2500 mL
1.13x10⁻⁴ grams SO4⁻² are 113.35 μg (1 μg = 1x10⁶ g)
9.26x10⁻⁵ grams K⁺ are 92.6 μg (1 μg = 1x10⁶ g)
113.35 μg /2500 mL = 0.045ppm
92.6 μg /2500 mL = 0.037ppm
Formal concentration of SO4⁻² :
Formality = Number of formula weight of solute / Volume of solution (L)
(1.13x10⁻⁴ grams / 96.06 g ) / 2.5 L = 4,70x10⁻⁷ F
Answer:
2
Explanation:
A single covalent bond is formed when two electrons are shared between the same two atoms, one electron from each atom.
Answer:
the answer is 2
Explanation:
b. barium sulfate
c. Repeat the above calculations using ionic strength and activities.
Answer:
a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹
c. 2.3 × 10⁻⁴ mol·L⁻¹; 5.5 × 10⁻⁸ mol·L⁻¹
Explanation:
a. Silver iodate
Let s = the molar solubility.
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸
E/mol·L⁻¹: s s
b. Barium sulfate
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰
I/mol·L⁻¹: 0.02 0
C/mol·L⁻¹: +s +s
E/mol·L⁻¹: 0.02 + s s
c. Using ionic strength and activities
(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂
The formula for ionic strength is
(ii) Silver iodate
a. Calculate the activity coefficients of the ions
b. Calculate the solubility
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)
(iii) Barium sulfate
a. Calculate the activity coefficients of the ions
b. Calculate the solubility
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq