If the velocity of a pitched ball has a magnitude of 41.0 m/s and the batted ball's velocity is 50.0 m/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.

Answers

Answer 1
Answer: The change in momentum is (91 m/s) multiplied by the mass of the ball (which you neglected to mention).
That's exactly the impulse delivered by the bat.

Related Questions

Two charged particles attract each other with a force of magnitude F acting on each. If the charge of one is doubled and the distance separating the particles is also doubled, the force acting on each of the two particles has magnitude (a) F/2, (b) F/4, (c) F, (d) 2F, (e) 4F, (f) None of the above.
What are the density, specific gravity and mass of the air in a room whose dimensions are 4 m * 6 m * 8 m at 100 kPa and 25 C.
If you see Sagittarius high in your night sky on June 20 and today is your birthday, what is your zodiac constellation?
A boat can travel in still water at 56 m/s. If the boats sails directly across a river that flows at 126 m/s. What is the boats speed relative to the ground
A disk of mass 5 kg and radius 1m is rotating about its center. A lump of clay of mass 3kg is dropped onto the disk at a radius of 0.5m , sticking to the disk. If the system is rotating with an angular velocity of 11 rad/s, what is the final angular momentum of the disk h the clay lump?wit? ( Idisk = MR^2/2)

Why do societies stratify?

Answers

Answer:

Because of gender, caste, race, wealth, and religion etc.

Explanation:

Social stratification means society is divided in different categories, class, layers or groups due to gender, caste, race, wealth, and religion etc.

Society stratifies due to the following regions:

(1)  Gender discrimination means male- female difference.

(2) Unequal distribution of income and wealth

(3) Different types of religions

(4) Racism

(5) Type of education

(6) Social status etc.

Final answer:

Societies stratify, or divide their members into distinct groups or layers, based on various factors such as wealth, income, cultural beliefs, and status. Factors like prestige or age are also influential in some societies. Stratification systems can be either closed, allowing little social mobility, or open, where movement between classes is possible.

Explanation:

Societies stratify, or categorize people into different social standings, for various reasons. In many societies, stratification is an economic system, predominantly determined by wealth and income. Often, people interact chiefly with others of the same social standing, allowing economic and cultural factors to organize individuals into distinct groups or layers.

Societal stratification can also be driven by cultural beliefs that place value on specific attributes or characteristics such as prestige or age. For example, in some cultures, the elderly are esteemed, while in other societies, they are overlooked. Such cultural attitudes play a significant role in reinforcing stratification systems.

Also, stratification occurs when there is a difference in status or power between various societal roles, leading to a hierarchical organization of different groups - an example is the clear socioeconomic status (SES) division within society where individuals with more resources are seen at the top layer.

Closed and open stratification systems present themselves in different societies. Closed systems offer little opportunity for change in social position, whereas open systems, like class systems, are based on achievement, allowing movement and interaction between layers and classes.

Learn more about Social Stratification here:

brainly.com/question/31058627

#SPJ3

As in problem 80, an 76-kg man plans to tow a 128000-kg airplane along a runway by pulling horizontally on a cable attached to it. Suppose that he instead attempts the feat by pulling the cable at an angle of 6.7° above the horizontal. The coefficient of static friction between his shoes and the runway is 0.87. What is the greatest acceleration the man can give the airplane? Assume that the airplane is on wheels that turn without any frictional resistance.

Answers

In order to solve this problem it is necessary to apply the concepts related to Newton's second law and the respective representation of the Forces in their vector components.

The horizontal component of this force is given as

F_x = Fcos(6.7)

While the vertical component of this force would be

F_y = Fsin(6.7)

In the vertical component, the sum of Force indicates that:

\sum F_y= 0

The Normal Force would therefore be equivalent to the weight and vertical component of the applied force, therefore:

N = mg+Fsin(6.7)

In the horizontal component we have that the Force of tension in its horizontal component is equivalent to the Force of friction:

\sum F_x = 0

F_x = F_(friction)

Fcos (6.7) = N\mu

Using the previously found expression of the Normal Force and replacing it we have to,

Fcos(6.7)= \mu (mg+Fsin(6.7))

Replacing,

Fcos(6.7)= (0.87) (mg+Fsin(6.7))

Fcos(6.7) = (0.87)(mg) + (0.87)(Fsin(6.7))

Fcos(6.7) -(0.87)(Fsin(6.7)) = 0.87 (mg)

F(cos(6.7)-0.87sin(6.7)) = 0.87 (mg)

F = (0.87 (mg))/((cos(6.7)-0.87sin(6.7)))

F = (0.87(128000*9.8))/((cos(6.7)-0.87sin(6.7)))

F = 1.95*10^6N

Finally the acceleration would be by Newton's second law:

F = ma

a = (F)/(m)

a = ( 1.95*10^6)/(128000)

a = 15.234m/s^2

Therefore the greatest acceleration the man can give the airplane is 15.234m/s^2

Air that enters the pleural space during inspiration but is unable to exit during expiration creates a condition called a. open pneumothorax. b. empyema. c. pleural effusion. d. tension pneumothorax.

Answers

Answer:

The correct answer is d. tension pneumothorax.

Explanation:

The increasing build-up of air that is in the pleural space is what we call the tension pneumothorax and this happens due to the lung laceration that lets the air to flee inside the pleural space but it does not return.

Sophia wanted to estimate the product 73 x 12 so she made an estimate of 70x 10. Would her estimate be greater or near the actual estimate?

Answers

her estimate would not be greater, so it would be near the actual estimate. the numbers 70 and 10 are smaller than the numbers 73 and 12, so it is not possible for 70 x 10 to be more than 73 x 12 is. i hope this helps!!

1. The resistance of an electric device is 40,000 microhms. Convert that measurement to ohms2. When an electric soldering iron is used in a 110 V circuit, the current flowing through the iron is
2 A. What is the resistance of the iron?
3. A current of 0.2 A flows through an electric bell having a resistance of 65 ohms. What must be
the applied voltage in the circuit?

Answers

Answer:

(1) 0.04 ohms (2) 55 ohms (3) 13 volt

Explanation:

(1) The resistance of an electric device is 40,000 microhms.

We need to convert it into ohms.

1\ \mu \Omega =10^(-6)\ \Omega

To covert 40,000 microhms to ohms, multiply 40,000 and 10⁻⁶ as follows :

40000 \ \mu \Omega =40000 * 10^(-6)\ \Omega\n\n=0.04\ \Omega

(2) Voltage used, V = 110 V

Current, I = 2 A

We need to find the resistance of the iron. Using Ohms law to find it as follows :

V = IR, where R is resistance

R=(V)/(I)\n\nR=(110)/(2)\n\nR=55\ \Omega

(3) Current, I = 0.2 A

Resistance, R = 65 ohms

We need to find the applied voltage in the circuit. Using Ohms law to find it as follows :

V=IR

V = 0.2 × 65

V = 13 volt

Answer:

1. 0.04 Ohms

2. 55 Ohms

3. 13 Volts

Explanation:

Penn Foster

On a touchdown attempt, 95.00 kg running back runs toward the end zone at 3.750 m/s. A 113.0 kg line-backer moving at 5.380 m/s meets the runner in a head-on collision. If the two players stick together, a) what is their velocity immediately after collision? b) What is the kinetic energy of the system just before the collision and a moment after the collision?

Answers

Answer:

(a) 1.21 m/s

(b) 2303.33 J, 152.27 J

Explanation:

m1 = 95 kg, u1 = - 3.750 m/s, m2 = 113 kg, u2 = 5.38 m/s

(a) Let their velocity after striking is v.

By use of conservation of momentum

Momentum before collision = momentum after collision

m1 x u1 + m2 x u2 = (m1 + m2) x v

- 95 x 3.75 + 113 x 5.38 = (95 + 113) x v

v = ( - 356.25 + 607.94) / 208 = 1.21 m /s

(b) Kinetic energy before collision = 1/2 m1 x u1^2 + 1/2 m2 x u2^2

                                               = 0.5 ( 95 x 3.750 x 3.750 + 113 x 5.38 x 5.38)

                                               = 0.5 (1335.94 + 3270.7) = 2303.33 J

Kinetic energy after collision = 1/2 (m1 + m2) v^2                

                                                = 0.5 (95 + 113) x 1.21 x 1.21 = 152.27 J