The compound Al2(CrO4)3 contains 12 oxygen atoms per formula unit. Knowing that one mole of oxygen atoms has a mass of 16.00 grams, the total mass of oxygen in 1.00 mole of Al2(CrO4)3 is grams.
The primary task here is to find the total mass of oxygen in 1.00 mole of Al2(CrO4)3. This is a classic chemistry problem that involves understanding the composition and molar mass of compounds. In the compound Al2(CrO4)3, the subscript 3 after (CrO4) means there are three chrome tetraoxides in one formula unit of the compound.
Every CrO4 ion is composed of one chromium atom and four oxygen atoms. Therefore, three CrO4 ions will contain 3 * 4 = 12 oxygen atoms.
Knowing that one mole of oxygen atoms weighs approximately 16.00 grams, we can find the total mass of oxygen in the compound by multiplying this molar mass by the number of oxygen atoms. Again, in one mole of Al2(CrO4)3 we have 12 oxygen atoms, hence grams.
So, the total mass of oxygen present in 1.00 mole of Al2(CrO4)3 is 192.00 grams.
#SPJ11
Answer:
it would be OA that is negatively charged
B. Carbon dioxide
C. Nitrogen
D. Hydrogen
Answer is: C. nitrogen.
Together, nitrogen (N₂) and oxygen (O₂) by volume account for 99.03% volume of the gases composing the dry air in the lower atmosphere.
Volume of nitrogen in air is 78.08%.
Volume of oxygen in air is 20.95%.
Together: 78.08% + 20.95% = 99.03%.
This gases can be separated by fractional distillation of liquefied air.
Explanation:
Hydrogen atoms of one water molecule are attracted towards the oxygen atom of a neighboring water molecule can be termed as an intramolecular bond.
Generally, the oxygen atom is partially negatively charged, and the hydrogen atom is partially positively charged, so an arttraction occurs which forms this hydrogen bond. The attraction of the O-H bonding electrons towards the oxygen atom leaves a deficiency on the far side of the hydrogen atom relative to the oxygen atom. The result is that the attractive force between the O-H hydrogen and the O-atom of a nearby water molecule is strong.