7.) True or False: "Courtney is traveled 5 miles in 3 hours" is an example of
acceleration.
True
False
Answer:
Explanation:
Using Conservation of momentum (total final momentum of system is)
m1•v1f + m2•v2 f + m3•v3 f=0
and it must be zero to equal the original momentum( since the original body is at rest).
Given that
original mass M=1.82×10^-26
First disintegrate mass m1=5.18×10^-27kg
In y direction V1f=6×10^6 I'm/s
Second disintegrate mass m2=8.5×10^-27kg
In x direction V2f=4×10^6 im/s
Then the third disintegrate will be
m3=M-m1-m2
m3=1.82×10^-26-5.18×10^-27-8.5×10^-27
m3=4.52×10^-27
And the velocity is unknown
Now using the formula above
m1•v1f + m2•v2 f + m3•v3 f=0
m3•V3f= - m1•v1f - m2•v2 f
4.52E-27V3f=-5.18E-27×6E6j - 8.5E-27×4E6 i
Divide thorough by 4.52E-27
V3f= - 6.88×10^6j - 7.52×10^6i
V3f= - 7.52×10^6i - 6.88×10^6j
The final velocity of the third mass disintegrate is 6.88×10^6j - 7.52×10^6i m/s
s2dp6
s2p6
s2p4
Ne =[He]2s2 2p6
Ar = [Ne]3s2 3p6
Kr = [Ar]4s2 3d10 4p6
As it can be seen that for all three elements, their outermost orbital are completely filled, that is it has both s orbital, p orbital and d orbital fulfilled. Noble or inert gas atoms like Neon, Argon, Krypton have fulfilled valence shell. Fulfilled outermost orbital is the most stable electronic state, hence all elements tends to achieve such stability. These noble gas elements are called inert gas because of their fulfilled outermost shell. This means they don't react easily or take part in eletron donating, receiving or sharing. This is because, for all other elements except inert gas atoms, their valence shell is incomplete and they tend to react by other atoms so as to complete their outermost shell , which we call as duplet (in case of Helium like) or Octet state. Such elements either donate some electrons or receive some to acheive such stable state..
Answer:
Work = 1167.54 J
Explanation:
The amount of non-conservative work here can be given by the difference in kinetic energy and the potential energy. From Law of conservation of energy, we can write that:
Gain in K.E = Loss in P.E + Work
(0.5)(m)(Vf² - Vi²) - mgh = Work
where,
m = mass of boy = 60 kg
Vf = Final Speed = 8.5 m/s
Vi = Initial Speed = 1.6 m/s
g = 9.8 m/s²
h = height drop = 1.57 m
Therefore,
(0.5)(60 kg)[(8.5 m/s)² - (1.6 m/s)²] - (60 kg)(9.8 m/s²)(1.57 m) = Work
Work = 2090.7 J - 923.16 J
Work = 1167.54 J
1. Electric field lines are the same thing as electric field vectors.
2. Electric field line drawings allow you to determine the approximate direction of the electric field at a point in space.
3. The number of electric field lines that start or end at a charged particle is proportional to the amount of charge on the particle.
4. The electric field is strongest where the electric field lines are close together.
Answer:
All statement are correct.
Explanation:
1. Electric field lines are the same thing as electric field vectors, electric field are mathematically vectors quantity. These vectors point in the direction in which a positive test charge would move.
2. Electric field line drawings allow you to determine the approximate direction of the electric field at a point in space. Yes it is correct tangent drawn at any point on these lines gives the direction of electric filed at that point.
3. The number of electric field lines that start or end at a charged particle is proportional to the magnitude of charge on the particle, is a correct statement.
4.The electric field is strongest where the electric field lines are close together, again a correct statement as relative closeness of field lines indicate a stronger strength of electric field.
Hence we can say that all the statement are correct.