Which of the following wouldhave low electromagnetic
energy?
A. X-rays
B. ultraviolet waves
C. radio waves

Answers

Answer 1
Answer:

Final answer:

Radio waves have low electromagnetic energy compared to X-rays and ultraviolet waves.


Explanation:

Electromagnetic energy refers to the energy associated with electromagnetic waves, which are a form of energy that can travel through empty space. The energy of an electromagnetic wave is directly proportional to its frequency. Therefore, the frequency determines the energy level of the wave.

In the given options, radio waves would have the lowest electromagnetic energy. Radio waves have the longest wavelength and lowest frequency among the three options. X-rays, on the other hand, have a higher frequency and shorter wavelength, making them more energetic. Ultraviolet waves have an even higher frequency and shorter wavelength, making them the most energetic among the three options.


Learn more about Electromagnetic energy here:

brainly.com/question/22963020



Related Questions

What can you infer from the fact that metals are good conductors of electricity?
Hoover Dam on the Colorado River is the highest dam in the United States at 221m, with a power output of 680 MW. The dam generates electricity by flowing water down to a point 150 m below the stop, at an average flow rate of 650 m3/s.
Light bulb 1 operates with a filament temperature of 2700 K whereas light bulb 2 has a filament temperature of 2100 K. Both filaments have the same emissivity, and both bulbs radiate the same power. Find the ratio A1/A2 of the filament areas of the bulbs.
If you travel 2 km north, then travel 5 km south, what is your displacement?
A runner first runs a displacement A of 3.20 km due south, and then a second displacement B that points due east. (a) The magnitude of the resultant displacement A + B is 5.38 km. What is the magnitude (in m) of B?

Two narrow slits separated by 0.30 mm are illuminated with light of wavelength 496 nm. (a) How far are the first three bright fringes from the center of the pattern if observed on the screen 130 cm distant? (b) How far are the first three dark fringes from the center of the pattern?

Answers

Answer:

Explanation:

a)

d = separation of the slits = 0.30 mm = 0.30 x 10⁻³ m

λ = wavelength of the light = 496 nm = 496 x 10⁻⁹ m

n = order of the bright fringe

D = screen distance = 130 cm = 1.30 m

x_(n) = Position of nth bright fringe

Position of nth bright fringe is given as

x_(n) =( n D \lambda )/(d)

For n = 1

x_(1) =( (1) (1.30)(496* 10^(-9)))/(0.30* 10^(-3))

x_(1) = 2.15* 10^(-3)m

For n = 2

x_(2) =( (2) (1.30)(496* 10^(-9)))/(0.30* 10^(-3))

x_(2) = 4.30* 10^(-3)m

For n = 3

x_(2) =( (2) (1.30)(496* 10^(-9)))/(0.30* 10^(-3))

x_(2) = 6.45* 10^(-3)m

b)

Position of nth dark fringe is given as

y_(n) =( (2n+1) D \lambda )/(2d)

For n = 1

y_(1) =( (2(1)+1) (1.30)(496* 10^(-9)))/(2(0.30* 10^(-3)))

y_(1) = 3.22* 10^(-3)m

For n = 2

y_(2) =( (2(2)+1) (1.30)(496* 10^(-9)))/(2(0.30* 10^(-3)))

y_(2) = 5.4* 10^(-3)m

For n = 3

y_(3) =( (2(3)+1) (1.30)(496* 10^(-9)))/(2(0.30* 10^(-3)))

x_(3) = 7.5* 10^(-3)m

Exposure to what type of radiant energy is sensed by human skin as warmth? x-rays ultraviolet infrared gamma rays

Answers

infrared radiant energy is sensed by human skin as warmth. Hence option C is correct.

What is radiation ?

Radiation in physics is the emission or transmission of energy as waves, particles, or both, via space or a material medium.[1][2] This comprises:

electromagnetic radiation, which includes gamma radiation, x-rays, microwaves, infrared, visible light, and ultraviolet radiation

Particle radiation includes beta radiation, proton radiation, neutron radiation, and other particles with non-zero rest energies.

ultrasonography, sound, and seismic waves (reliant on a physical transmission medium) are examples of acoustic radiation.

gravity radiation, which manifests as gravitational waves or ripples in spacetime's curvature

Depending on the energy of the emitted particles, radiation is frequently divided into ionising and non-ionizing categories. More than 10 eV is carried by ionising radiation, which is sufficient to ionise atoms, molecules.

To know more about radiation :

brainly.com/question/13934832

#SPJ3.

i think it is infared


Which state of matter is most similar to solids

Answers

Answer:

liquids

Explanation

Two parallel wires I and II that are near each other carry currents i and 3i both in the same direction. Compare the forces that the two wires exert on each other. A. The wires exert equal magnitude attractive forces on each other. B. Wire I exerts a stronger force on wire II than II exerts on I.C. Wire II exerts a stronger force on wire I than I exerts on II. D. The wires exert equal magnitude repulsive forces on each other. E. The wires exert no forces on each other.

Answers

Answer:

A. The wires exert equal magnitude attractive forces on each other.

Explanation:

Magnetic field due to current i on current 2i

B₁ = 10⁻⁷ x 2 i / r where r is distance between the two wires

Force on wire II due to wire I per unit length

= magnetic field x current in wire II

= B₁ x 2 i

= [ 10⁻⁷ x 2 i / r ]  x 2i

= 4  x 10⁻⁷ i² / r

Magnetic field due to current 2i on current i

B₂ = 10⁻⁷ x 4 i / r where r is distance between the two wires

Force on wire I due to wire II per unit length

= magnetic field x current in wire I

= B₂ x  i

= [ 10⁻⁷ x 4 i / r ]  x i

= 4  x 10⁻⁷ i² / r

So final forces on each wire are same .

This force will be attractive in nature . The direction of force can be known from fleming's right  hand rule .

what happens when an electric current passes through a coil of wire instead of a single straight peice of wire

Answers

Answer:

An electric current passing through a coil of wire gives a strong form of magnetism called electromagnetism. When the electric current passes through a single straight piece of wire the electromagnetism is weak.

Explanation:

Final answer:

Passing an electric current through a coil of wire generates a magnetic field. The strength of this field can be modified by changing the amount of current or the number of turns in the coil.

Explanation:

When an electric current passes through a coil of wire, as opposed to a straight piece, it creates a magnetic field around the coil. This is the principle behind electromagnets and many electrical appliances we use on a daily basis. The strength of the magnetic field depends on the amount of current and the number of turns in the coil. For example, the more turns the wire has, the stronger the magnetic field.

Learn more about Electromagnetism here:

brainly.com/question/2334706

#SPJ2

Resonances of the ear canal lead to increased sensitivity of hearing, as we’ve seen. Dogs have a much longer ear canal—5.2 cm—than humans. What are the two lowest frequencies at which dogs have an increase in sensitivity? The speed of sound in the warm air of the ear is 350 m/s.A. 1700 Hz, 3400 Hz
B. 1700 Hz, 5100 Hz
C. 3400 Hz, 6800 Hz
D. 3400 Hz, 10,200 Hz

Answers

Answer:

B. 1700 Hz, 5100 Hz

Explanation:

Parameters given:

Length of ear canal = 5.2cm = 0.052 m

Speed of sound in warm air = 350 m/s

The ear canal is analogous to a tube that has one open end and one closed end. The frequency of standing wave modes in such a tube is given as:

f(m) = m * (v/4L)

Where m is an odd integer;

v = velocity

L = length of the tube

Hence, the two lowest frequencies at which a dog will have increased sensitivity are f(1) and f(3).

f(1) = 1 * [350/(4*0.052)]

f(1) = 1682.69 Hz

Approximately, f(1) = 1700 Hz

f(3) = 3 * [350/(4*0.052)]

f(3) = 5048 Hz

Approximately, f(3) = 5100 Hz