Answer:
Knowing that these metals are infact good conductors of electricity we can infer that metals are able to hold and conduct certain temperatures. Another thing we can infer is that these good conductors can be used in connection to transferring energy or electricity.
Answer:
➢This is a vector addition problem which requires magnitude and direction as the answer. First is to resolve the southbound vector and the northbound vector. Since they are opposite in directions their vector sum is their algebraic sum. 3 km north + 5 km south = 2 km south.
We then add 2 km west and 2 km south using Pythagorean theorem since west and south form a right angle. (2 km)^2 west + (2 km)^2 south gives (4 + 4) km^2 southwest = 8 (km)^2 45 degrees south of west
Extracting the square root of 8 gives us about 2.83 km 45 degrees south of west.
Explanation:
I hope it will help you...
The spacing between the two slits is 0.221mm.
The spacing between the two slits is given as,
Where is wavelength, y is fringe spacing and L is length of screen.
Given that,
Substitute in above equation.
Hence, the spacing between the two slits is 0.221mm.
Learn more about the sodium lamp here:
Answer:
2613.3 pa
Explanation:
p=F/A
p=ma/A
p=200×9.8/0.75
p=2613.3
a speed of 50kmh than it
would at a
speed of 6okmh?
Answer:
2hr much longer
Explanation:
Given parameters
Distance = 600km
Speed 1 = 50km/h
Speed 2 = 60km/h
Unknown:
How much longer will it take to travel a distance = ?
Solution:
Speed is the distance divided by time;
Speed =
Now;
Time taken =
Time 1;
=
= 12hr
Time 2;
=
= 10hr
To find how much more time;
Time 1 will take 12hr - 10hr, 2hr much longer to travel the distance at that rate.
Answer:
The think the answer is solar radiation.
Explanation:
here, we gain the heat from the sun through a radiation. When it travels from the sun the harmful radiation are absorbed by ozone layer and heat enegry is provided to the surface of the Earth.
hopeit helps..
Answer:
Explanation:
A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass per unit length of 1 = 0.0128(kg/m). It’s displacement function is D(x,t) = Acos(kx - t). It’s amplitude is 0.001m and its wavelength is 0.8m. It reaches the end of this string, and continues on to a string with 2 = 0.0512(kg/m) and the same tension as the first string. Give the values of A, k, and , for the original wave, as well as k and the reflected JJJJJJave and the transmitted wave.