Which type of energy refers to the sum of potential and kinetic energies in the particles of a substance?Omotion
Ostored
O internal
O heat

Answers

Answer 1
Answer:

Final answer:

Internal energy is the sum of potential and kinetic energies in the particles of a substance.


Explanation:

The type of energy that refers to the sum of potential and kinetic energies in the particles of a substance is internal energy.

Internal energy is the total energy of all the particles in a substance, including the energy associated with their motion and stored energy due to their positions or arrangements. It consists of both potential energy (energy stored in the particles' positions) and kinetic energy (energy of the particles' motion).

For example, consider a gas in a container. The internal energy of the gas would be the sum of the potential energy of the gas particles due to their positions and the kinetic energy of the particles due to their motion.


Learn more about Internal Energy here:

brainly.com/question/36602494



Related Questions

Much of our knowledge of the interior of the Earth comes from the study of planetary vibrations, which is the science of
The magnitude J(r) of the current density in a certain cylindrical wire is given as a function of radial distance from the center of the wire's cross section as J(r) = Br, where r is in meters, J is in amperes per square meter, and B = 2.35 ✕ 105 A/m3. This function applies out to the wire's radius of 2.00 mm. How much current is contained within the width of a thin ring concentric with the wire if the ring has a radial width of 11.5 μm and is at a radial distance of 1.20 mm?
A poorly constructed room is suffering from a pipe leakage problem. The leaked pipes are continuously flooding the 90-m2 room such that the water level in the room increases at a steady rate of 1.2 cm/hr (a) How much water in L/min should be pumped out of the room to keep the water level cnstat (b) How much water in L/min should be pumped out of the room to reduce the water level by 4 cm/hr?
Which statement describes how a machine can help make work easier? It can put out more force than the input force by decreasing the distance over which force is applied. It can increase the amount of work performed if the output force is in the same direction as the input force. It can apply a greater output force over a greater distance compared to the input force and distance. It can increase the distance over which output force acts by applying less output force than input force.
A galilean telescope adjusted for a relaxed eye is 36cm long. If the objective lens has a focal length of 40cm, what is the magnification?

What is gravity at north pole, South pole and at different point on the equatorial regions. Give reasoning for your answers why do you think it is different or same. Can you imagine same concept for the electric charge, yes or No

Answers

Answer:

The gravity at Equator is 9.780 m/s2 and the gravity at poles is 9.832 m/s2. The gravity at poles are bigger than at equator, principally because the Earth is not totally round. The gravity is inversely proportional to the square of the radius, that is the reason for the difference of gravity (The radius at Poles are smaller than at Equator).

If Earths would have a net charge Q. The Electric field of Earth would be inversely proportional to the square of the radius of Earth (Electric field definition for a charge), the same case as for gravity. So there would be a difference between the electric field at poles and equator, too.

When you blow some air above a paper strip, the paper, rises. This is because 1.) the air above the paper moves faster and the pressure is lower 2.) the air above moves faster and the pressure is higher 3.) the air above the paper moves faster and the pressure remains constant 4.) the air above the paper moves slower and the pressure is higher 5.) the air above the paper moves slower and the pressure is lower

Answers

The correct option is option (1)

The faster movement of air on the upper surface of the paper creates lower pressure above the paper.

Pressure difference:

The movement of air is always from a region of higher pressure to a region of lower pressure.

As we blow air above the paper strip a low pressure is created above the strip due to the fast movement or high speed of the air. And the pressure below the strip is higher in comparison to the pressure above since the air below is not moving.

So, due to the pressure difference, a force is generated on the paper strip by the air from the lower surface to the upper surface.

Learn more about pressure difference:

brainly.com/question/11767207?referrer=searchResults

This is happened because "the air" above "moves faster" and "the pressure" is "lower".

Option:  1

Explanation:

Air movement take place from the region where air pressure is more than the region where the pressure is low. When we "blow" air above the "paper strip" paper rises because "low pressure" is created above the strip as high speed winds always travel with reduced air pressure. Hence due to higher air pressure below the strip, it is pushed upwards. This difference in pressure results into fast air moves. This happen because "speed" of the wind depends on "the difference between the pressures" of the air in the two regions.

A large aquarium has portholes of thin transparent plastic with a radius of curvature of 1.95 m and their convex sides facing into the water. A shark hovers in front of a porthole, sizing up the dinner prospects outside the tank.a) If one of the sharks teeth is exactly 46.5 cm from the plastic, how far from the plastic does it appear to be to observers outside the tank? (You can ignore refraction due to the plastic.)b) Does the shark appear to be right side up or upside down?c) If the tooth has an actual length of 5.00 cm, how long does it appear to the observers?

Answers

Answer:

Explanation:

For refraction through a curved surface , the formula is as follows

μ₂ / v - μ₁ / u  = (μ₂ -μ₁ )/R , Here μ₂( air) = 1 , μ₁ ( water) = 4/3 , R = 1.95 m

u , object distance  = -  .465 m

1 / v + 1.333 / .465  = (1 -1.333 )/1.95

1 / v + 2.8667  = - .171

1 / v = - 2.8667 - .171 = - 3.0377

v = - .3292 m

= - 32.92 cm

image will be formed in water.

c ) magnification = μ₁v / μ₂u ,  μ₁ = 1.33 , μ₂ = 1 , u = 46.5 , v = 32.92 .

= (1.33 x 32.92) / (1 x 46.5)

= .94

size of image of teeth = .94 x 5

= 4.7 cm .

A thin aluminum meter stick hangs from a string attached to the 50.0 cm mark of the stick. From the 0.00 cm mark on the meter stick hangs a 5.202 kg concrete block. From the 75.0 cm mark on the meter stick hangs a 7.99 kg steel ball. At what mark on the meter stick must a 2.46 kg wooden block be attached so that the meter stick balances horizontally when lowered into fresh water? Assume the densities of concrete, steel, and wood are 2500.0 kg/m3, 8000.0 kg/m3, and 500 kg/m3 respectively. A. 57.6 cm
B. 57.4 cm
C. 57.2 cm
D. 57.8 cm

Answers

The wooden block must be attached at the 57.6 cm mark on the meter stick.

What is the value

We can solve this equation for the distance of the wooden block from the pivot point, which is the mark on the meter stick where it must be attached so that the meter stick balances horizontally when lowered into fresh water.

The density of aluminum is 2700 kg/m³ The volume of the meter stick is 0.01 m³ (length times width times thickness). The acceleration due to gravity is 9.81 m/s²

Substituting these values into the equation above, we get:

distance of wooden block from pivot point = -44.89 Nm / [(2700 kg/m³)(0.01 m³)(9.81 m/s²)]

= 0.576 m

Learn more about meter

brainly.com/question/1578784

#SPJ3

Answer:

Stop cheating in exam

Explanation:

Shame!!!!

I am sorry but I will have to refer you to the student conduct at UTA.

A basketball player jumps straight up for a ball. To do this, he lowers his body 0.250 m and then accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.960 m above the floor. (a) Calculate his velocity (in m/s) when he leaves the floor. 4.33 Correct: Your answer is correct. m/s (b) Calculate his acceleration (in m/s2) while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.250 m.

Answers

Answer:

a. 3.73 m/s b. 27.8 m/s²

Explanation:

(a) Calculate his velocity (in m/s) when he leaves the floor.

Using the conservation of energy principles,

Potential energy gained by basketball player = kinetic energy loss of basket ball player

So, ΔU + ΔK = 0

ΔU = -ΔK

mg(h' - h) = -1/2m(v'² - v²)

g(h' - h) = -1/2(v'² - v²) where g = acceleration due to gravity = 9.8 m/s², h' = 0.960 m, h = 0.250 m, v' =0 m/s (since the basketball player momentarily stops at h' = 0.960 m) and v = velocity with which the basketball player leaves the floor

Substituting the values of the variables into the equation, we have

9.8 m/s²(0.960 m - 0.250 m) = -1/2((0 m/s)² - v²)

9.8 m/s²(0.710 m) = -1/2(-v²)

6.958 m²/s² = v²/2

v² = 2 × 6.958 m²/s²

v² = 13.916 m²/s²

v = √(13.916 m²/s²)

v = 3.73 m/s

(b) Calculate his acceleration (in m/s2) while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.250 m.

Using v² = u² + 2as where u = initial speed of basketball player before lengthening = 0 m/s, v = final speed of basketball player after lengthening = 3.73 m/s, a = acceleration during lengthening and s = distance moved during lengthening = 0.250 m

So, making, a subject of the formula, we have

a = (v² - u²)/2s

Substituting the values of the variables into the equation, we have

a = ((3.73 m/s)² - (0 m/s)²)/(2 × 0.250 m)

a = (13.913 m²/s² - 0 m²/s²)/(0.50 m)

a = 13.913 m²/s²/(0.50 m)

a = 27.83 m/s²

a ≅ 27.8 m/s²

G Water enters a house through a pipe 2.40 cm in diameter, at an absolute pressure of 4.10 atm. The pipe leading to the second-floor bathroom, 5.20 m above, is 1.20 cm in diameter. The flow speed at the inlet pipe is 4.75 m/s a) What is the algebraic expression for flow speed in the bathroom?
b) Calculate the flow speed in the bathroom.
c) What is algebraic expression for the pressure in the bathroom?
d) Calculate the water pressure in the bathroom. Report your answer in the (atm) unit.

Answers

Answer:

A) A₁ V₁ = A₂V₂

B) V₂ = 19 m /s

C) P₁ + (1/2)ρv₁² = P₂ + (1/2)ρv₂² + (h₂ - h₁ )ρg

D) P₂ = 1.88 atm

Explanation:

A) From the piaget's theory of conservation of volume, we can calculate the rate of flow of water from;

A₁ V₁ = A₂V₂

Where;

A₁ and A₂ are area of cross section V₁ and V₂ are velocity of flow at two places along pipe.

B) Using the formula given in A above, we obtain;

π x 1.2² x 4.75 = π x 0.6² x V₂

V₂ x 0.36 = 6.84

V₂ = 6.84/0.36

V₂ = 19 m /s

c ) To find pressure we shall apply Bernoulli's theorem in fluid dynamics;

P₁ + (1/2)ρv₁² = P₂ + (1/2)ρv₂² + (h₂ - h₁ )ρg

Where;

P₁ and P₂ are pressure at ground and second floor respectively

v₁ and v₂ are velocity at ground and second floor respectively

h₁ and h₂ are height at ground and second floor respectively ρ is density of water.

Thus, plugging in the relevant values to obtain;

4.1 x 10⁵ + (1/2 x 1000 x 4.75²) = P₂ + (1/2 x 1000 x 19²) + (5.2 x 1000 x 9.8)

(4.1 x 10⁵) + (0.11 x 10⁵) = P₂ + (1.8 X 10⁵) + (0.51 X 10

P₂ = 1.9 X 10⁵ N/m² = 1.88 atm

Other Questions