Answer:
In a climatological sense, dryness is a function of both annual rainfall and evaporation
Answer:
Explanation:
# moles that exist in 1.9 X 10 23 =
= # of atoms/# of Avogadro 's num
= 1.9 X 10 23 / 6.02x10 23
= 0.266 mole of Pb
now we calculate the mass
mass of lead = # mol x m.wt
= 0.266 X 106.4
= 28.30 gram
The combustion of ethane yields carbon dioxide, and with 5.90 moles of ethane being reacted, it results in the production of 11.8 moles of CO2.
The question pertains to the concept of stoichiometry in chemistry, and the chemical reaction in question is a combustion reaction involving ethane (C2H6). From the balanced reaction, it is evident that 2 moles of ethane (C2H6) produce 4 moles of carbon dioxide (CO2). Therefore, if we have 5.90 moles of ethane reacting, it's a straightforward calculation to determine that this would yield twice that many moles of CO2. We simply multiply the moles of ethane by the stoichiometric ratio (4/2) to get the moles of CO2.
Example Calculation: 5.90 moles of ethane x (4 moles CO2 / 2 moles C2H6) = 11.8 moles CO2
So, when 5.90 moles of ethane are burned in an excess of oxygen, 11.8 moles of CO2 are produced.
#SPJ3
In the combustion of ethane, for every mole of ethane burned, two moles of carbon dioxide are produced. Hence, when 5.90 moles of ethane are burned, 11.8 moles of carbon dioxide are produced.
The chemical reaction given, 2C2H6(g) + 7O2(g) ⟶ 4CO2(g) + 6H2O(g), states that 2 moles of ethane (C2H6) produce 4 moles of carbon dioxide (CO2). Thus, the mole-to-mole ratio of ethane to carbon dioxide is 2:4, or simplified, 1:2. So, for every mole of ethane burned, two moles of carbon dioxide are produced.
Given that 5.90 moles of ethane are burned, we can calculate the quantity of carbon dioxide produced by multiplying 5.90 moles by 2. Hence, when 5.90 moles of ethane are burned in an excess of oxygen, 11.8 moles of carbon dioxide are produced.
#SPJ2
Answer:pH = 2.96
Explanation:
C5H5N + HBr --------------> C5H5N+ + Br-
millimoles of pyridine = 80 x 0.3184 =25.472mM
25.472 millimoles of HBr must be added to reach equivalence point.
25.472 = V x 0.5397
V =25.472/0.5397= 47.197 mL HBr
total volume = 80 + 47.197= 127.196 mL
Concentration of [C5H5N+] = no of moles / volume=
25.472/ 127.196= 0.20M
so,
pOH = 1/2 [pKw + pKa + log C]
pKb = 8.77
pOH = 1/2 [14 + 8.77 + log 0.20]
pOH = 11.0355
pH = 14 - 11.0355
pH = 2.96
B) an alpha particle or a helium atom.
C) a beta particle or a hydrogen nucleus.
D) an alpha particle or a helium nucleus.
The radioactive uranium decays to produce thorium and it emits an alpha particle or helium atom. Thus, option A is correct.
Unstable heavy isotopes of elements undergo nuclear decay to produce stable atoms by the emission of charged particle such as alpha or beta particles.
Based on the emitted particle, there are two types of decay process namely alpha decay and beta decay. In alpha decay atoms emits alpha particles which are helium nuclei and the atom losses its mass number by 4 units and atomic number by two units,
In beta decay, electrons are emitted by the atom, where no change occurs in mass number and atomic number increases by one unit. Uranium undergo alpha decay by emitting alpha particle or helium nuclei.
To find more on alpha decay, refer here:
#SPJ6
The atoms having the same number of protons but a different number of neutrons have been termed isotopes.
The neutrons and protons are the constituents of the nucleus. The number of protons and electrons is equal in the atom. When two different atoms have the same number of protons the species have been termed isotopes. The atomic number of the species differ that resulting in the different positions in the periodic table.
For more information about the atoms, refer to the link: