Need help I don't remember what to do?
need help I don't remember what to do? - 1

Answers

Answer 1
Answer: I'm just doing the ones that you don't have numbers already for.
2.) just leave it alone and it's correct
3.) Mg + 2AgNo3 --> Mg(No3)2 + 2Ag
5.) just leave it alone and it's correct
8.) 10C3H8O3 + 15O2 --> 30CO2 + 4H2O
10.) P4 + 6Br2 --> 4PBr3
12.) 2FeCl3 + 6NaOH --> 2Fe(OH)3 + 6NaCl
13.) 2CH3OH + 3O2 --> 2CO2 + 4H2O
14.) 2Al + 3Cu(NO3)2 --> 2Al(NO3)3 + 3Cu
15.) 3CaCl2 + 2K3AsO4 --> Ca3(AsO4)2 + 6KCl
16.) 2NH3 --> N2 + 3H2
17.) 2H3PO4 + 3Ba(OH)2 --> Ba3(PO4)2 + 6H2O
19.) Mg3N2 + 6H2O --> 3Mg(OH)2 + 2NH3
I hope this helps you!!

Related Questions

Calculate the pH of a buffer solution made by adding 15.0 g anhydrous sodium acetate (NaC2H3O2) to 100.0 mL of 0.200 M acetic acid. Assume there is no change in volume on adding the salt to the acid. (pKa for acetic acid is 4.74 or Ka is 1.8 x 10-5)3.
What is the relationship between potential and kinetic energy?*As potential energy increases, kinetic energy increases.O As potential energy increases, kinetic energy decreases.As potential energy decreases, kinetic energy decreases.O Potential and kinetic energy are two separate things and have no relationship.
the hydrogen gas generated when calcium metal reacts with water is collected over water at 20 degrees C. The volume of the gas is 641 mL and the pressure is 988mmHg. What is the mass in grams of the hydrogen gas obtained? The vapor pressure of water at 20 degrees C is 17.54 mmHg.
2. Which test for iron(II) ions is conclusive ​
The following data is given to you about a reaction you are studying: Overall reaction: 2A  D Proposed mechanism: Step 1 A + B  C (slow) Step 2 C + A  D + B (fast) [A]o = 0.500 M [B]o = 0.0500 M [C]o = 0.500 M [D]o = 1.50 M This reaction was run at a series of temperatures and it was found that a plot of ln(k) vs 1/T (K) gives a straight line with a slope of -982.7 and a Y intercept of -0.0726. What is the initial rate of the reaction at 298K?

A cubic box with sides of 20.0 cm contains 2.00 × 1023 molecules of helium with a root-mean-square speed (thermal speed) of 200 m/s. The mass of a helium molecule is 3.40 × 10-27 kg. What is the average pressure exerted by the molecules on the walls of the container? (The Boltzmann constant is 1.38 × 10-23 J/K and the ideal gas constant is R = 8.314 J/mol•K .) (12 pts.)

Answers

Answer:

1.133 kPa is the average pressure exerted by the molecules on the walls of the container.

Explanation:

Side of the cubic box = s = 20.0 cm

Volume of the box ,V= s^3

V=(20.0 cm)^3=8000 cm^3=8* 10^(-3) m^3

Root mean square speed of the of helium molecule : 200m/s

The formula used for root mean square speed is:

\mu=\sqrt{(3kN_AT)/(M)}

where,

= root mean square speed

k = Boltzmann’s constant = 1.38* 10^(-23)J/K

T = temperature = 370 K

M = mass helium = 3.40* 10^(-27)kg/mole

N_A = Avogadro’s number = 6.022* 10^(23)mol^(-1)

T=(\mu _(rms)^2* M)/(3kN_A)

Moles of helium gas = n

Number of helium molecules = N =2.00* 10^(23)

N = N_A* n

Ideal gas equation:

PV = nRT

Substitution of values of T and n from above :

PV=(N)/(N_A)* R* (\mu _(rms)^2* M)/(3kN_A)

PV=(N* R* \mu ^2* M)/(3k* (N_A)^2)

R=k* N_A

PV=(N* \mu ^2* M)/(3)

P=(2.00* 10^(23)* (200 m/s)^2* 3.40* 10^(-27) kg/mol)/(3* 8* 10^(-3) m^3)

P=1133.33 Pa =1.133 kPa

(1 Pa = 0.001 kPa)

1.133 kPa is the average pressure exerted by the molecules on the walls of the container.

Final answer:

The question asks for the average pressure exerted by helium gas molecules on the walls of a cubic container. Using the equation PV = Nmv^2, we can calculate pressure by substituting the given values for volume, number of molecules, mass of one molecule, and root-mean-square speed.

Explanation:

The question is asking to calculate the average pressure exerted by helium gas molecules on the walls of a cubic container. The important formula relating pressure (P), volume (V), number of molecules (N), mass of a molecule (m), and the square of the rms speed (v2) of the molecules in a gas is:

PV = Nmv2,

First, we need to determine the volume of the container, which is the cube of one side, so V = (20 cm)3 = (0.2 m)3. Inserting the given values into the equation and solving for P gives us the desired answer. Recall that the rms speed is given, so no temperature calculations are needed.

Therefore, using all given data points:

Volume (V) = (0.2 m)3

Number of molecules (N) = 2.00 × 1023

Mass of one helium molecule (m) = 3.40 × 10-27 kg

Root-mean-square speed (vrms) = 200 m/s

By substituting these values, we can find the pressure exerted by the gas. This represents an application of kinetic theory of gases which assumes the behavior of an ideal gas.

Calculate the molar solubility of mercury (I) bromide, Hg2Br2, in 1.0 M KBr. The Ksp for Hg2Br2 is 5.6 X 10−23. (Hint: How would the Br− concentration from the sparingly soluble compound itself compare to the Br− concentration that comes from the KBr?

Answers

Answer:

The correct answer is 5.6 × 10⁻²³ M.

Explanation:

As a highly soluble salt, KBr dissolves easily in water, while Hg₂Br₂ is very less soluble in comparison to KBr.

Let the solubility of Hg₂Br₂ is S mol per liter.

Therefore,

KBr (s) (1.0 M) ⇒ K⁺ (aq) (1M) + Br⁻ (aq) (1M)

Hg₂Br₂ (s) (1-S) ⇔ Hg₂⁺ (aq) (S) + 2Br⁻ (aq) (2S)

Net [Br-] = (2S + 1) M

Ksp = S (2S + 1)²

Ksp = S (4S² + 1 + 4S)

Ksp = 4S³ + S + 4S²

As the solubility is extremely less, therefore, we can ignore S² and S³. Now,

Ksp = S = 5.6 × 10⁻²³ M

Hence, the solubility of Hg₂Br₂ is 5.6 × 10⁻²³ M.

In the reaction 5 space B r to the power of minus space (a q )space plus space B r O subscript 3 to the power of minus space (a q )space plus space 6 space H to the power of plus space (a q )space rightwards arrow space 3 space B r subscript 2 space (a q )space plus space 3 space H subscript 2 O space (l )the rate of disappearance of Br- at some moment in time was determined to be 3.5 x 10-4 M/s. What is the rate of appearance of Br2 at that same moment

Answers

Answer:

r_(Br_2)=2.1x10^(-4)M/s

Explanation:

Hello,

In this case, for the reaction:

5Br^-(aq)+BrO_3^-(aq)+6H^+(aq)\rightarrow 3Br_2(aq)+3H_2O(l)

Thus, via the rate proportions between Br⁻ and Br₂ for which the stoichiometric coefficients are 5 and 3 respectively, we can write:

(r_(Br^-))/(-5) =(r_(Br_2))/(3)

Hence, the rate of appearance of Br₂ turns out:

r_(Br_2)=(3r_(Br^-))/(-5)=(3*-3.5x10^(-4)M/s)/(-5)\n \nr_(Br_2)=2.1x10^(-4)M/s

Take into account that the rate of disappearance is negative for reactants.

Best regards.

To what extend must a soln conc 40mg 4g NO3 pa cm3 be dilute to yield one of conc 16mg 4g NO3 pa cm3​

Answers

Each ml should be dilute to 2.5 ml

To each ml of solution 1.5 ml of water should be added

A solid is hard brittle and electrically nonconducting. it's melt ( the liquid form of the substance) and an aqueous solution containing the substance conduct electricity. classify solid.

Answers

Answer: ionic solid

Explanation:

In an ionic solid, the ions are bound together by strong electrostatic attraction hence they are immobile and the solid is unable to conduct electricity. If this solid is dissolved in water, the ions move apart due to solvation and become mobile hence the solution conduts electricity. Similarly, when the solid melts, the ions also become free and the melt conduct electricity.

A sample of gas has an initial volume of 3.00 L and an initial pressure of 2.14 atm. If the volume expands to 8.15 L, what is the final pressure?a. 0.855 atm b. 0.788 atm c. 3.49 atm d. 5.81 atm

Answers

Answer:

The final pressure is 0.788 atm (option b).

Explanation:

Boyle's law says that the volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure. That is: if the pressure increases, the volume decreases, while if the pressure decreases, the volume increases. This is expressed mathematically as the product of pressure times volume equal to a constant value:

P*V=k

Assuming a certain volume of gas V1 that is at a pressure P1 at the beginning of the experiment, by varying the volume of gas to a new value V2, then the pressure will change to P2, and it will be fulfilled:

P1*V1=P2*V2

In this case:

  • P1= 2.14 atm
  • V1= 3 L
  • P2= ?
  • V2= 8.15 L

Replacing:

2.14 atm*3 L= P2* 8.15 L

Solving:

(2.14 atm*3 L)/(8.15 L) =P2

0.788 atm= P2

The final pressure is 0.788 atm (option b).