The stability of an atom is affected by the balance between the electrons, protons, and neutrons in an atom.
A particle less than an atom is referred to as a subatomic particle. A subatomic particle can either be an elementary particle, which is not made of other particles, or a composite particle, which is composed of other particles, according to the Standard Model of particle physics.
Particles smaller than an atom are referred to as subatomic particles. The three primary subatomic particles present in an atom are protons, neutrons, and electrons.
Learn more about sub-atomic particles at: brainly.com/question/16847839
#SPJ6
Sugar, flour, and eggs cannot be separated. The materials' properties have changed, resulting in a chemical change.Therefore, crumbling a cookie is not a physical change.
Physical changes affect a chemical substance's form but not its chemical composition. Physical changes can be used to separate mixtures into their component compounds, but not to separate compounds into chemical elements or simpler compounds.
A chemical change is the transformation of one material into another, the formation of new materials with different properties, and the formation of one or more new substances. It occurs when one substance reacts with another to form a new substance.
A physical change is characterized by a change in physical properties. Melting, transition to a gas, change in strength, change in durability, changes in crystal form, textural change, shape, size, colour, volume, and density are all examples of physical properties.
Thus, crumbling a cookie is not a physical change.
To learn more about physical change, follow the link;
#SPJ2
Answer:
Because the sugar flour and eggs can no longer be separated. The properties of the materials have changed so it's a chemical change
coefficients of the reactants equal the coefficients of the products,
products and reactants are the same chemicals,
same number of each kind of atom appears in the reactants and in the products,
same number of each kind of atom appears in the reactants and in the products
Answer:
0.295 mol/L
Explanation:
Given data:
Volume of solution = 3.25 L
Mass of BaBr₂ = 285 g
Molarity of solution = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Number of moles of solute:
Number of moles = mass/ molar mass
Molar mass of BaBr₂ = 297.1 g/mol
Number of moles = 285 g/ 297.1 g/mol
Number of moles= 0.959 mol
Molarity:
M = 0.959 mol / 3.25 L
M = 0.295 mol/L
The question is about calculating the molarity of a solution. First, convert the given mass of solute into moles using the molar mass. Then, using the molarity formula, divide the moles of solute by the volume of the solution in liters.
In order to determine the molarity of the solution, we will divide the amount of solute (in moles) by the volume of the solution (in liters). The formula for molarity (M) is:
M = moles of solute/volume of solution in liters
First, we need to convert the mass of BaBr2 into moles. The molecular weight of BaBr2 is 297.14 g/mol. So, 285 g of BaBr2 is equal to 285/297.14 = 0.959 moles.
The volume of the solution is given as 3.25 L. So, plugging these values into the formula gives us the molarity of the solution:
M = 0.959 moles/3.25 L = 0.295 M
So, the molarity of the solution is 0.295 M.
#SPJ6
B. Diethyl ether, dichloromethane, ethyl acetate, ethanol
C. Ethyl acetate, ethanol, dichloromethane, diethyl ether
D. Ethanol, ethyl acetate, diethyl ether, dichloromethane
Answer:
B. Diethyl ether, dichloromethane, ethyl acetate, ethanol
Explanation:
The polarity of solvents can be determined by their polarity indexes. Polarity index is defined as the measure of the ability of the solvent to interact with various polar test solutes.
Diethyl ether is the least polar with a polarity index of 2.8
Dichloromethane with a polarity index of 3.1
Ethyl acetate with a polarity index of 4.3
Ethanol is the most polar with a polarity index of 5.2
The differences in polarities of these solvents is due to their structure. Polar solvents have large dipole moments because they contain bonds between atoms with very different electronegativities, such as oxygen and hydrogen.
Because of the two non-polar methyl groups in diethyl ether, it is not as polar as dichloromethane which has two electronegative chlorine atoms attached to a carbon atom. Similarly too, because diethyl ether has two strongly electronegative oxygen atoms sharing a bond with carbon, it has a larger dipole moment than dichloromethane. Ethanol has an oxygen hydrogen bond which has the largest dipole moment, thus, it is the most polar of the given solvents.