What is the relationship between potential and kinetic energy?*As potential energy increases, kinetic energy increases.
O As potential energy increases, kinetic energy decreases.
As potential energy decreases, kinetic energy decreases.
O Potential and kinetic energy are two separate things and have no relationship.

Answers

Answer 1
Answer:

Answer:

As potential energy increases, kinetic energy decreases

It's an inverse relationship

Answer 2
Answer:

Final answer:

Potential energy and kinetic energy are related through the law of conservation of energy. When potential energy increases, kinetic energy decreases, and vice versa, as energy is simply converted between these two forms.

Explanation:

The relationship between kinetic energy and potential energy lies within the law of conservation of energy. This law states that energy cannot be created or destroyed, only converted from one form to another.

Potential energy is the energy stored in an object due to its position in a force field or due to its configuration. For example, when you lift a book off the ground, it gains potential energy because of the work done against the force of gravity.

On the other hand, kinetic energy is the energy of an object due to its motion. The same book, when dropped, loses potential energy and gains kinetic energy as it falls towards the ground.

Hence, when potential energy increases, kinetic energy decreases, and vice versa. This is because the total energy (potential + kinetic) must be conserved, assuming no energy is lost to other forms like heat or sound.

Learn more about Conservation of Energy here:

brainly.com/question/13345660

#SPJ12


Related Questions

PLEASE HELP IMMEDIATELY ​
What is the answer? Please
Which of the characteristics below best describes organic compounds? produced by living organisms compounds of carbon and hydrogen limited to carbon compounds which are synthetic any compound containing carbon
What is the phase of water at 0.25 atm and 0°C?Water(liquid)Pressure (atm)0.5-0.25Ice(solid)Water vapor(gas)0000Temperature (°C)O A. GasO B. Solid and gasO C. Solid and liquidD. Solid
The solubility of glucose at 30°C is125 g/100 g water. Classify a solution made by adding 550 g of glucose to 400 mL of water at 30°C. Explain your classification, and describe how you could increase the amount of glucose in the solution without adding more glucose.

Complete and balance the equation for the following acid-base neutralization reaction. If water is used as a solvent, write the reactants and products as aqueous ions. In some cases, there may be more than one correct answer, depending on the amount of reactants used.(a)Mg(OH)2 + HClO4?
(b)SO3 + H2O? (Assume an excess of water and that the product dissolves)
(c) SrO + H2SO4?

Answers

Explanation:

A balanced equation is defined as the one that has equal number of atoms of all the elements present on both reactant and product side.

(a) Mg(OH)_(2) + HClO_(4) \rightarrow Mg(ClO_(4))_(2) + H_(2)O

Number of atoms on reactant side are as follows.

Mg = 1

O = 6

H = 3

Cl = 1

Number of atoms on product side are as follows.

Mg = 1

O = 9

H = 2

Cl = 2

So, to balance this equation we multiply Mg(OH)_(2) by 2 on reactant side and multiply H_(2)O by 2 on product side.

Therefore, the balanced reaction equation is as follows.

       2Mg(OH)_(2) + HClO_(4) \rightarrow Mg(ClO_(4))_(2) + 2H_(2)O  

(b)  SO_(3) + H_(2)O \rightarrow H_(2)SO_(4)

Number of atoms on reactant side are as follows.

S = 1

O = 4

H = 2

Number of atoms on product side are as follows.

S = 1

O = 4

H = 2

Therefore, this equation is balanced as it has same number of atoms on both reactant and product side.

(c)  SrO + H_(2)SO_(4) \rightarrow SrSO_(4) + H_(2)O

Number of atoms on  reactant side are as follows.

Sr = 1

O = 1

H = 2

S = 1

O = 4

Number of atoms on product side are as follows.

Sr = 1

O = 1

H = 2

S = 1

O = 4

Therefore, this equation is balanced.

Which issue is a limitation of using synthetic polymers

Answers

The main issues of using synthetic polymers include toxicity poor biocompatibility etc. Synthetic polymers stay non-degradable for ling time and make the surface polluted.

What are synthetic polymers?

Natural polymers are naturally made substances such as cellulose, starch, glycogen etc. Polymers made by man are called synthetic polymers. Synthetic polymers are diverse and are made through several polymerization techniques.

PVC, polyethylene, polyesters Teflon etc. are very common polymers in daily life. A major class of synthetic polymers include plastics which are major  pollutants nowadays.

Most of the synthetic polymers are non-biodegradable and will cause landfill issues. Some them are toxic in nature and might cause several health issues. Blending them with biodegradable  polymers is a solution for this.

Find more on synthetic polymers:

brainly.com/question/4047007

#SPJ2

Answer: As trash, Synthetic Polymers are not biodegradable. Landfills can easily fill up with synthetic polymers. Plastics can be made into different products. Recycling synthetic polymers is costly.

Explanation: Hope this helps in any way possible!

Draw a line-bond structure for CBrN. Explicitly draw all H atoms. You do not have to include lone pairs in your answer. In cases where there is more than one answer, just draw one.

Answers

Answer:

Br - C ≡ N

Explanation:

To draw the Lewis line-bond structure we need to bear in mind the octet rule, which states that in order to gain stability each atom tends to share electrons until it has 8 electrons in its valence shell.

  • C has 4 e⁻ in its valence shell so it will form 4 covalent bonds.
  • Br has 7 e⁻ in its valence shell so it will form 1 covalent bond.
  • N has 5 e⁻ in its valence shell so it will form 3 covalent bonds.

The most stable structure that respects these premises is:

Br - C ≡ N

It does not have any H atom.

What is the molecular formula of the structure below?Picture is attached pls help I’ll mark as brainliest for the right answer

Answers

Answer:

C₆H₆

Explanation:

Each border of the figure represents 1 atom of carbon. We have 6 borders = 6 atoms of carbon.

Each atom of carbon form 4 bonds. All the carbons are doing a double bond and a single bond with other carbons. That means are bonded 3 times. The other bond (That is not represented in the figure. See the image) comes from hydrogens. As we have 6 carbons that are bonded each 1 with one hydrogen. There are six hydrogens and the molecular formula is:

C₆H₆

This structure is: Benzene

Vinegar, the commercial name for acetic acid, HC2Hs02, is a monoprotic organic acid. A 5% (w/v) solution of vinegar is used to titrate a sample of an antacid that contains CaCO3 is the only basic component. If one antacid tablet contains 800 mg of CaCOs in it, then calculate how many milliliters of vinegar should be required to completely neutralize the CaCO3 present in one tablet of antacid?

Answers

19.2 g of vinegar solution

Explanation:

Here we have the chemical reaction between acetic acid (CH₃COOH) and calcium carbonate (CaCO₃):

2 CH₃COOH +  CaCO₃ → (CH₃COO)₂Ca + CO₂ + H₂O

number of moles = mass / molecular weight

number of moles of CaCO₃ = 0.8 / 100 = 0.008 moles

Knowing the chemical reaction, we devise the following reasoning:

if       2 moles of CH₃COOH react with 1 moles of CaCO₃

then X moles of CH₃COOH react with 0.008 moles of CaCO₃

X = (2 × 0.008) / 1 = 0.016 moles of CH₃COOH

mass = number of moles × molecular weight

mass of acetic acid (CH₃COOH) = 0.016 × 60 = 0.96 g

Now to find the volume of vinegar acid (solution of acetic acid) with a concentration of 5% (weight/volume) we use the following reasoning:

if there are         5 g of acetic acid in 100 mL of vinegar solution

then there are   0.96 g of acetic acid in Y mL of vinegar solution

Y = (0.96 × 100) / 5 = 19.2 g of vinegar solution

Learn more about:

weight/volume concentration

brainly.com/question/12721794

#learnwithBrainly

Is the law of conservative mass observed in this equation CaCO3 + 2HCI -->CaCI2 +H2O + CO2

Answers

Answer:

The law is observed in the given equation.

Explanation:

CaCO₃ + 2HCI → CaCI₂ +H₂O + CO₂

In order to find out if the law of conservative mass is followed, we need to count how many atoms of each element are there in both sides of the equation:

  • Ca ⇒ 1 on the left, 1 on the right.
  • C ⇒ 1 on the left, 1 on the right.
  • O ⇒ 3 on the left, 3 on the right.
  • H ⇒ 2 on the left, 2 on the right.
  • Cl ⇒ 2 on the left, 2 on the right.

As the numbers for all elements involved are the same, the law is observed in the given equation.