Answer:
Explanation:
initial velocity, u = 25 m/s
distance, s = 55 m
coefficient of static friction = 0.6
coefficient of kinetic friction = 0.3
Let the acceleration is a.
Use third equation of motion
v² = u² + 2as
0 = 25 x 25 - 2 x a x 55
a = 5.68
a = μg
μ = 5.68 / 9.8 = 0.58
so, the coefficient of friction is less then the coefficient of static friction so the antiques are safe.
As we know that current is defined as rate of flow of charge
so by rearranging the equation we can say
here we know that
here we will substitute it in the above equation
now here limits of time is from t = 0 to t = 1/180s
so here it will be given as
so total charge flow will be 0.44 C
Answer:
The total charge passing a given point in the conductor is 0.438 C.
Explanation:
Given that,
The expression of current is
....(I)
We need to calculate the total charge
On integrating both side of equation (I)
Hence, The total charge passing a given point in the conductor is 0.438 C.
Answer: 114.4 GJ
Explanation:
Heat loss Q=U×A×ΔT
Heat loss of size A is determined by the U value of materials and the difference in temperature.
From 10.9cm from the ice
50m= 5000cm
A= 5000×5000
Q== (10.9) (5000) (5000)(4.184)(1×4 + 80)
Q = 95,771,760,000J
Q≈ 95.8 GJ
Linear gradient from the bottom of the pond to the ice:
Q = (89.1)(5000)(5000)(4.184)(1*2)
Q = 18,639,720,000J
Q ≈ 18.6 GJ
Total heat loss:
Q= 95.8GJ + 18.6GJ
Q= 114.4 GJ
Answer:
A light-year is the distance light travels in one year.
Answer:
Explanation:
a unit of astronomical distance equivalent to the distance that light travels in one year, which is 9.4607 × 1012 km (nearly 6 million million miles).
Answer:
λ = 5.734 x 10⁻⁷ m = 573.4 nm
Explanation:
The formula of the Young's Double Slit experiment is given as follows:
where,
λ = wavelength = ?
L = distance between screen and slits = 8.61 m
d = slit spacing = 1.09 mm = 0.00109 m
Δx = distance between consecutive bright fringes = = 0.00453 m
Therefore,
λ = 5.734 x 10⁻⁷ m = 573.4 nm
Answer:
Explanation:
Let length of the pendulum be l . The expression for time period of pendulum is as follows
T = 2π
For Mars planet ,
1.5 =
For other planet
.92 =
Squiring and dividing the two equations
The second planet appears to be earth.