Answer:
12.15°
Explanation:
Using Snell's law as:
Where,
is the angle of incidence ( 14.0° )
is the angle of refraction ( ? )
is the refractive index of the refraction medium (n=1.46)
is the refractive index of the incidence medium (n=1.27)
Hence,
Angle of refraction = = 12.15°
Answer:
M
Explanation:
Answer:
Improvement in observational, and exploratory technology
Rapid increase in knowledge
International collaboration
Explanation:
Our knowledge of the solar system has increased greatly in the past few years due to to some factors which are listed below.
Improvement in observational, and exploratory technology: In recent years, developments in technology has led to the invention of advanced observational instruments and probes, that are used to study the solar system. Also more exploratory units are now developed to go out into the solar system and gather useful data which is then further processed to yield more results about our solar system.
Rapid increase in knowledge: The past few years has seen an increased number of theories proposed to explain phenomena in the solar system. Some of these theories have been seen to be accurate under experimentation, leading to newer and fresher insights into our solar system. Also, new experiments and research are carried out, all these leading to an exponential growth in our knowledge of the solar system.
International Collaboration: The sharing of knowledge by scientists all over has led to a better, quick understanding of the solar system. Also, scientists from different countries, working together on different experiment and data sharing regarding our solar system now allows our knowledge of the solar system to deepen faster.
Answer:
Emf induced in the loop is 0.02V
Explanation:
To get the emf of induced loop, we have to use faraday's law
ε = - dΦ/dt
To get the flux, we use;
Φ = BA cos(θ)
B = The uniform magnetic field
A = Area of rectangular loop
θ = angle between magnetic field and normal to the plane of loop
substitute the flux equation (Φ) into the faraday's equation
we have ε = - d(BA cos(θ)) / dt
ε = BA sinθ dθ/dt
from the question;B = 0.18T, A=0.15m2, θ = π/2 ,dθ/dt = 0.75rad/s
Our equation will now look like this;
ε = (0.18T) (0.15m2) (sin(π/2)) (0.75rad/s)
ε = 0.02V
Rewrite the amounts as improper fractions:
9 2/3 = 29/3
3 7/8 = 31/8
Rewrite both fractions with a common denominator
29/3 = 232/24
31/8 = 93/24
Now subtract: 232/24 - 93/24 = 139/24
Rewrite as a proper fraction: 5 19/24
Answer 5 19/24
Answer:
3 fans per 15 A circuit
Explanation:
From the question and the data given, the light load let fan would have been
(60 * 4)/120 = 240/120 = 2 A.
Next, we add the current of the fan motor to it, so,
2 A + 1.8 A = 3.8 A.
Since the devices are continuos duty and the circuit current must be limited to 80%, then the Breaker load max would be
0.8 * 15 A = 12 A.
Now, we can get the number if fans, which will be
12 A/ 3.8 A = 3.16 fans, or approximately, 3 fans per 15 A circuit.
The total power draw of each fan is 3.8 amperes. Thus, considering a limit of 80% usage of 15 amperes, only 3 fans can be connected to a single circuit to keep the total power draw below 12 amperes.
The question is asking how many ceiling fans, each with a certain power draw, can be connected on a single 15-ampere circuit, considering that each fan is a continuous-duty device. The power draw of each fan when the motor is operated at high speed and the light kit is fully loaded is the sum of the power draw of the motor and the light kit. As the power draw of each motor is 1.8 amperes and the light kit is 240 watts or 2 amperes (calculated using the formula Power = Voltage x Current; assuming a voltage of 120 volts), the total power draw of each fan is 3.8 amperes. Considering the limit of 80% of the continuous load, only 12 amperes (80% of 15) can be used. Thus, 3 fans can be connected to the circuit as it reaches 11.4 amperes, close enough to the 12 amperes limit.
#SPJ3
-Calculate the net work Wnet in J done on the bucket of water by the two forces F1 and Fg.
To calculate the work done by gravity on the bucket of water as it is lifted up the well, multiply the weight of the bucket by the lifting distance. The net work done on the bucket by the force applied by the farmer and gravity is the sum of the work done by both forces. The net work is represented by the equation Wnet = W1 + Wg.
To calculate how much work gravity does on the bucket filled with water as the farmer lifts it up the well, we need to multiply the force of gravity (weight) by the vertical distance the bucket is lifted. The equation for work is W = Fd, where W is the work done, F is the force, and d is the distance. In this case, the force of gravity is the weight of the bucket, which can be calculated by multiplying the mass by the acceleration due to gravity (9.8 m/s^2).
So, the work done by gravity (Wg) on the bucket is Wg = Fg * d = (m * g) * d = (3.9 kg * 9.8 m/s^2) * d = 38.22 d Joules.
To calculate the net work done on the bucket by the two forces, we can use the equation Wnet = W1 + Wg, where W1 is the work done by force F1 and Wg is the work done by gravity. Since force F1 and the displacement (lifting distance) are both vertical, the work done by F1 is given by W1 = F1 * d.
Therefore, the net work done on the bucket by forces F1 and gravity is Wnet = F1 * d + Fg * d = (57.5 N) * d + (3.9 kg * 9.8 m/s^2) * d = (57.5 N + 38.22 d) Joules.
#SPJ12
Answer:
Explanation:
Zeeman Effect -
In the presence of static magnetic field , the process of splitting of the spectral line into several components , is called Zeeman effect .
On the sun , there is a strong magnetic field , and hence , can show Zeeman effect .
And due to this ,
The sunspots can be studied by using this effect .
Sunspots are the darker region on the surface of Sun .