How many sulfide ions are in 15 dg of sodium sulfide?O 1.16 x 1022
O 3.04 x 1028
O 5.76 x 1029
O 6.02 x 1023
O 3.13

Answers

Answer 1
Answer:

There are 5.78 × 10^20 sulfide ions in sodium sulfide

The formula of the compound is Na2S. The molar mass of the compound is calculated as follows; 2(23) +32 = 46 + 32 = 78 g/mol

Number of moles of Na2S = 0.15 g/ 78 g/mol = 0.0019 moles

Since there is 1 mole of Na^+ and 2 moles of S^2- in Na2S, the number of S^2- ions in  0.19 moles of Na2S is 0.00096 moles of S^2-.

If 1 mole of S^2- contains 6.02  × 10^23

0.095 moles of S^2- contains 0.00096 moles × 6.02  × 10^23/ 1 mole

= 5.78 × 10^20 sulfide ions

Learn more: brainly.com/question/1309057


Related Questions

Which of the following is an acceptable structure for 2,5,5-trimethylhept-3-yne (CH3CH2)CH(CH3)C≡CCH2CH(CH3)2 CH3CH2C(CH3)2C≡CC(CH3)3 (CH3CH2)2C(CH3)C≡CCH2CH3 (CH3CH2)C(CH3)2C≡CCH(CH3)2 (CH3CH2CH2)CH(CH3)C≡CC(CH3)3
Hydrogen chloride gas and oxygen react to form water vapor and chlorine gas. What volume of chlorine would be produced by this reaction if 7.12 L of oxygen were consumed? Also, be sure your answer has a unit symbol, and is rounded to 3 significant digits.
Three different samples were weighed using a different type of balance for each sample. The three were found to have masses of 0.6160959 kg, 3.225 mg, and 5480.7 g. The total mass of the samples should be reported as?
Choose the correct statement(s) for the following reaction: 8Fe(s) + S8 (s) → 8 FeS (s) (a) Iron is being oxidized. (b) Iron is being reduced. (c) Sulfur is being oxidized. (d) Sulfur is being reduced
g The electronic structure of which ONE of the following species cannot be adequately described by a single Lewis formula? (In other words, the electronic structure of which one can only be described by drawing two or more resonance structures?) A) C2H4 B) SO3 2– C) SO3 D) C3H8 E) HCN

What is the pOH of a solution with a [OH^ - ] of 10^ -11?

Answers

Answer:

pOH= 11

Explanation:

pOH= -log[10^ -11]= 11

Consider the titration of a 73.9 mL sample of 0.13 M HC2H3O2 with 6.978 M NaOH. Ka(HC2H3O2) = 1.8x10-5 Determine the initial pH before any NaOH is added. Express your answer using two decimal places.Consider the titration of a 46.6 mL sample of 0.078 M HC2H3O2 with 1.135 M NaOH. Ka(HC2H3O2) = 1.8x10-5 Determine the volume of added base required to reach the equivalence point. Answer in units of milliliters.

Consider the titration of a 17.2 mL sample of 0.128 M HC2H3O2 with 0.155 M NaOH. Ka(HC2H3O2) = 1.8x10-5 Determine the pH at 0.46 mL of added base.

Answers

Answer:

1. pH = 2,82

2. 3,20mL of 1,135M NaOH

3. pH = 3,25

Explanation:

The buffer of acetic acid (HC₂H₃O₂) is:

HC₂H₃O₂ ⇄ H⁺ + C₂H₃O₂⁻

The reaction of HC₂H₃O₂ with NaOH produce:

HC₂H₃O₂ + NaOH → C₂H₃O₂⁻ + Na⁺ + H₂O

And ka is defined as:

ka = [H⁺] [C₂H₃O₂⁻] / [HC₂H₃O₂] = 1,8x10⁻⁵ (1)

1. When in the solution you have just 0,13M HC₂H₃O₂ the concentrations in equilibrium will be:

[H⁺] = x

[C₂H₃O₂⁻] = x

[HC₂H₃O₂] = 0,13 - x

Replacing in (1)

[x] [x] / [0,13-x] = 1,8x10⁻⁵

x² = 2,34x10⁻⁶ - 1,8x10⁻⁵x

x² - 2,34x10⁻⁶ + 1,8x10⁻⁵x  = 0

Solving for x:

x = - 0,0015 (Wrong answer, there is no negative concentrations)

x = 0,0015

As [H⁺] = x = 0,0015 and pH is -log [H⁺], pH of the solution is 2,82

2. The equivalence point is reached when moles of HC₂H₃O₂ are equal to moles of NaOH. Moles of HC₂H₃O₂ are:

0,0466L × (0,078mol / L) = 3,63x10⁻³ moles of HC₂H₃O₂

In a 1,135M NaOH, these moles are reached with the addition of:

3,63x10⁻³ moles × (L / 1,135mol) = 3,20x10⁻³L = 3,20mL of 1,135M NaOH

3. The initial moles of HC₂H₃O₂ are:

0,0172L × (0,128mol / L) = 2,20x10⁻³ moles of HC₂H₃O₂

As the addition of NaOH spent HC₂H₃O₂ producing C₂H₃O₂⁻. Moles of C₂H₃O₂⁻ are equal to moles of NaOH and moles of HC₂H₃O₂ are initial moles - moles of NaOH. That means:

0,46x10⁻³L NaOH × (0,155mol / L) = 7,13x10⁻⁵ moles of NaOH ≡ moles of C₂H₃O₂⁻

Final moles of HC₂H₃O₂ are:

2,20x10⁻³ - 7,13x10⁻⁵ = 2,2187x10⁻³ moles of HC₂H₃O₂

Using Henderson-Hasselbalch formula:

pH = pka + log₁₀ [C₂H₃O₂⁻] / [HC₂H₃O₂]

Where pka is -log ka = 4,74. Replacing:

pH = 4,74 + log₁₀ [7,13x10⁻⁵] / [2,2187x10⁻³ ]

pH = 3,25

I hope it helps!

Which particles affect the stability in of the atom

Answers

The stability of an atom is affected by the balance between the electrons, protons, and neutrons in an atom.

What are sub-atomic particles?

A particle less than an atom is referred to as a subatomic particle. A subatomic particle can either be an elementary particle, which is not made of other particles, or a composite particle, which is composed of other particles, according to the Standard Model of particle physics.

Particles smaller than an atom are referred to as subatomic particles. The three primary subatomic particles present in an atom are protons, neutrons, and electrons.

Learn more about sub-atomic particles at: brainly.com/question/16847839

#SPJ6

balance protons and neutrons

Gasline is solid by the liter in many countries. How many liters are required to fill a 12.0-gal gas tank?

Answers

Answer : The volume required to fill the gas tank is, 45.42 liters

Explanation :

Conversion used for gallon to liters are:

1\text{ gallon}=3.785\text{ liter}

As we are given the volume of gas tank in gallon is, 12.0 gal

Now we have to determine the volume of gas tank in liters.

As, 1 gallon = 3.785 liter

So, 12.0 gallon = \frac{12.0\text{ gallon}}{1\text{ gallon}}* 3.785\text{ liter}=45.42\text{ liter}

Therefore, the volume required to fill the gas tank is, 45.42 liters

Which two structures will provide a positive identification of a plant cell under a microscope? A.) Lysosomes, cell wall. B.) large central vacuole, cell wall. C.) large central vacuole ribosomes. D.)nucleoid, chloroplasts.

Answers

The Right Answer Is D.) Nucleoid chloroplasts. 
the answer is B large central vacuole and cell wall. they are the easiest/biggest things to see under a microscope to identify a plant cell

Draw the Lewis structure for the polyatomic hydronium H3O cation. Be sure to include all resonance structures that

Answers

Answer:

 Lewis structure of Hydronium ion is shown below :                          

Explanation:

Lewis structure : It is a representation of valence electrons on the atoms in a molecule

Here , Hydronium ion is given , which contains 1 atom of oxygen and 3 atoms of hydrogen .

Oxygen has a total of 6 valence electrons and hydrogen contains 1 valence electron .

Oxygen share its 3 valence electrons with 3 hydrogen atoms and left with 3 valence electrons. From these three valence  electrons of oxygen atom  two electrons will be shown as a pair of electrons on oxygen atom but a single electron can not be shown . So , to simplify this, one positive charge is shown overall .  

Resonance structure will be same as the hybrid structure because all  three atoms are same , that is hydrogen .