Answer:
450N
Explanation:
weight= m*g
weight=45*10
weight=450N
Answer:
T=12544 N*m
Explanation:
Given
L=4.0m
ms=500kg
mw=70kg
Torque is the force in a distance the relation is proportional so the torque of weight first is:
Ts = Fs*d
Ts = ms*g*L
Ts = 500kg*9.8m/s^2*2m
Ts = 9800 N*m
now torque of the worker
Tw = Fw*d
Tw = 70kg*9.8m/s^2*4m
Tw = 2744 N*m
Torque net is
Tnet = Tw+Ts
Tnet= 2744 + 9800 =12544 N*m
The total torque about the bolt due to the worker and the weight of the beam is 12544 Nm. This is found by adding the torque due to the beam and the worker which can be calculated using their weights and their distance from the pivot point (bolt).
The key to solving this question is understanding torque, which in physics represents the rotational effect of a force. Torque is calculated using the formula τ = r x F, where τ is the torque, r is the distance from the pivot point, and F is the force applied.
In this case, there are two forces to consider: the weight of the beam and the weight of the worker. Both of these can be calculated using the formula for weight (F = m*g), where m is mass and g is gravitational acceleration, which is approximately 9.8 m/s^2 on Earth. The weight of the beam is therefore 500 kg * 9.8 m/s^2 = 4900 N, and the weight of the worker is 70 kg * 9.8 m/s^2 = 686 N.
The distance from the pivot (bolt) for the beam's weight is considered to be the midpoint of the beam, so it is 4.0 m / 2 = 2.0 m. For the worker, r equals the full length of the beam, which is 4.0 m. The total torque can be calculated by adding the torque due to the beam and the worker. Therefore, the total torque τ = (2.0 m * 4900 N) + (4.0 m * 686 N) = 9800 Nm + 2744 Nm = 12544 Nm.
#SPJ11
B.)Plants that have broad leaves to capture sunlight and long roots to penetrate the soil.
C.)Animals with thin fur that allows them to get rid of heat efficiently.
D.)Animals with long tongues for capturing prey and sticky pads for climbing trees.
Answer:
the awnser is A becuse the hair help.
Answer:
Gravitational
Electrostatic
magnetic
Frictional
gravitational
electrostatic
magnetic
frictional
hope it helps
pls mark as brainliest
Answer:
3.4 x 10^-4 T
Explanation:
A = 1.5 x 10^-3 m^2
N = 50
R = 180 ohm
q = 9.3 x 106-5 c
Let B be the magnetic field.
Initially the normal of coil is parallel to the magnetic field so the magnetic flux is maximum and then it is rotated by 90 degree, it means the normal of the coil makes an angle 90 degree with the magnetic field so the flux is zero .
Let e be the induced emf and i be the induced current
e = rate of change of magnetic flux
e = dФ / dt
i / R = B x A / t
i x t / ( A x R) = B
B = q / ( A x R)
B = (9.3 x 10^-5) / (1.5 x 10^-3 x 180) = 3.4 x 10^-4 T
The magnitude of the magnetic field can be calculated using Faraday's Law of electromagnetic induction, by setting up and solving an equation involving the number of turns in the coil, the area of the coil, and the time it takes for the coil to rotate.
To calculate the magnitude of the magnetic field, we can use Faraday's Law of electromagnetic induction, which can be expressed as E = d(N∙Φ )/dt, where E represents the induced EMF, N is the number of turns, and Φ is the magnetic flux (flux equals the product of the magnetic field B, the area A through which it passes and the cosine of the angle between B and A).
Given the information in the problem, we know that E = Q/R ∙ t. Since the coil is rotated through 90 degrees, it goes from being parallel to being perpendicular to the field, resulting in a change in magnetic flux of BNA. We can set up the equation E = d(NBA)/dt = Q/R ∙ t = [(50 turns) ∙ (1.5 × 10-3 m²) ∙ B)/(t)]
We can solve this equation to determine the magnitude of the magnetic field B. Remember, always double-check your calculations to ensure their accuracy.
#SPJ3
Answer:
a) W₁ = - 127 J, b) W₂ = 148.18 J, c) = 3.43 m/s and d) = 3.43 m / s
Explanation:
The work is given the equation
W = F. d
Where the bold indicates vectors, we can also write this expression take the module of each element and the angle between them
W = F d cos θ
They give us displacement, let's use Newton's second law to find strength, like the block has an equal acceleration (a = g / 7). We take a positive sign down as indicated
W-T = m a
T = W -m a
T = mg -mg/7
T = mg 6/7
T = 3.6 9.8 6/7
T = 30.24 N
Now we can apply the work equation to our problem
a) the force of the cord is directed upwards, the displacement is downwards, so there is a 180º angle between the two
W₁ = F d cos θ
W₁ = 30.24 4.2 cos 180
W₁ = - 127 J
b) the force of gravity is directed downwards and the displacement is directed downwards, the angle between the two is zero (T = 0º)
W₂ = (mg) d cos 0º
W₂ = 3.6 9.8 4.2
W₂ = 148.18 J
c) kinetic energy
K = ½ m v²
Let's calculate speed with kinematics
² = vo² + 2 a y
v₀ = 0
a = g / 7
² = 2g / 7 y
= √ (2 9.8 4.2 / 7)
= 3.43 m/s
We calculate
K = ½ 3.6 3.43²
K = 21.18 J
d) the speed of the block and we calculate it in the previous part
= 3.43 m / s