Answer:
Explanation:
D its incorrect in edge
Answer:
D
Explanation:
The particles will move side to side over large areas
(A) m3
(B) 1.8 m3
(C) 3.6 m3
(D) 6 m3
(E) 9 m3
Answer:
(C)
Explanation:
=
Since the object is a solid sphere, the equation for rotational inertia is:
The provided question seems to have a discrepancy as the calculated value of rotational inertia for a spherical object with a given mass-radius relationship is 4.5M³, which does not match any of the supplied answer choices.
The question is asking for the correct expression for the rotational inertia of a spherically shaped object with mass distribution given by the radius as a function of mass (r = km² where k = 3). The rotational inertia, or moment of inertia, for a solid sphere is given by the formula ⅒MR², where M is the mass of the sphere, and R is its radius. Considering that R is defined by r = km², we substitute R with km² in the formula:
I = ⅒M(km²)² = ⅒Mk²m⁴ = ⅒Mk²M²
Since k = 3, we further simplify the expression:
I = ⅒M(3M)² = ⅒(3²)M³ = ⅒ × 9M³ = 4.5M³
However, none of the options (A) to (E) match the value 4.5M³, which indicates there may be an error in the supplied options or an error within the initial assumptions or question parameters. It's important to recheck the given data and the calculation steps to ensure accuracy. If the question and the parameters are indeed accurate as stated, additional information or clarification would be necessary.
Complete question is;
If the diameter of the black marble is 3.0 cm, and by using the formula for volume, what is a good approximation of its volume?
Answer:
14 cm³
Explanation:
We will assume that this black marble has the shape of a sphere from online sources.
Now, volume of a sphere is given by;
V = (4/3)πr³
We are given diameter = 3 cm
We know that radius = diameter/2
Thus; radius = 3/2 = 1.5 cm
So, volume = (4/3)π(1.5)³
Volume ≈ 14.14 cm³
A good approximation of its volume = 14 cm³
Answer:
The ratio of the model size is 1 : 2000
Explanation:
Given
Real Diameter = 0.012 um
Scale Diameter = 24 um
Required
Determine the scale ratio
The scale ratio is calculated as follows;
Substitute values for real and scale measurements
Divide the numerator and the denominator by 0012um
Represent as ratio
Hence, the ratio of the model size is 1 : 2000
The ratio of the model size to the actual size is 1 : 2000. This means the model represents the white blood cell's diameter 2000 times larger than its actual size.
The ratio of the model size to the actual size can be calculated using the given measurements:
Actual Diameter = 0.012 um
Model Diameter = 24 um
Ratio = Model Diameter / Actual Diameter
Ratio = 24 um / 0.012 um
Ratio = 2000
So, the ratio of the model size to the actual size is 1 : 2000. This means the model represents the white blood cell's diameter 2000 times larger than its actual size.
Learn more about white blood from the link given below.
#SPJ3
What is the normal force exerted by the surface on the bottom block? (Use the following as necessary: m and g as necessary.)
(a) The normal force exerted by the surface on the bottom block is N1 = 2mg.
Given that,
Based on the above information, we can say that the N1 is 2mg.
Learn more: brainly.com/question/17429689
Answer:
N = 2mg
Explanation:
Assuming the surface is horizontal
The surface must provide enough normal force to prevent the masses from accelerating in the vertical direction.
y=m/x
y equals m divided by x
y=mx2+b for nonzero b
y equals m x squared plus b for nonzero b
y=mx
y equals m x
y=mx2
Inverse proportionality means that the two terms should be proportional to inverse of each other ~
That is :
And according to given options, only option 1 shows inverse proportionality. where y is inversely proportional to x and m is proportionality constant.
The equation that represents inverse proportionality in mathematics is y=m/x, where y is inversely proportional to x, and m is the constant of proportionality.
In mathematics, inverse proportionality, or inversely proportional, is a concept where one variable increases when the other variable decreases, and vice versa. It lies at the heart of various mathematical and real-world applications. The equation y=m/x represents inverse proportionality, where 'y' is inversely proportional to 'x'. In this equation, 'm' is the constant of proportionality. As 'x' increases, 'y' decreases given 'm' remains unchanged and vice versa.
#SPJ2
Answer:
(a). The change in the kinetic energy of his center of mass during this process is -495 J.
(b). The average force is 1650 N.
Explanation:
Given that,
Mass = 110 kg
Speed = 3.0 m/s
Distance = 30 cm
(a). We need to calculate the change in the kinetic energy of his center of mass during this process
Using formula of kinetic energy
Put the value into the formula
(b). We need to calculate the average force must he exert on the railing
Using work energy theorem
Put the value into the formula
The average force is 1650 N.
Hence, (a). The change in the kinetic energy of his center of mass during this process is -495 J.
(b). The average force is 1650 N.
Answer
given,
mass of ice hockey player = 110 Kg
initial speed of the skate = 3 m/s
final speed of the skate = 0 m/s
distance of the center of mass, m = 30 cm = 0.3 m
a) Change in kinetic energy
b) Average force must he exerted on the railing
using work energy theorem
W = Δ KE
F .d = -495
F x 0.3 = -495
F = -1650 N
the average force exerted on the railing is equal to 1650 N.