Answer: The first plastic based on a synthetic polymer was invented in 1907. Plastic sticks around in the environment for ages, threatening wildlife and spreading toxins.
why?
Answer:
Answer is cerebellum. And this is the right answer
Answer:
1088.89 Pa
Explanation:
According to the Newton's second law of motion:-
Mass = 50.0 kg
Acceleration = g = 9.81 m/s²
So,
Force = 490 N
Area of the base = = m² = 0.45 m²
Pressure = Force/Area = = 1088.89 Pa
"0.154 L" is the volume of the balloon.
Given:
Pressure,
Volume,
As we know,
→
or,
→
By substituting the values, we get
Thus the above answer i.e., "option a" is correct.
Learn more:
Answer:
Option a . 0.154L
Explanation:
P₁ . V₁ = P₂ . V₂
when we have constant temperature and constant moles for a certain gas.
At sea level, pressure is 1 atm so:
0.5 L . 1atm = V₂ . 3.25 atm
(0.5L . 1atm) / 3.25 atm = 0.154 L
Answer:
Mass PbI2 = 18.19 grams
Explanation:
Step 1: Data given
Volume solution = 99.8 mL = 0.0998 L
mass % KI = 12.0 %
Density = 1.093 g/mL
Volume of the other solution = 96.7 mL = 0.967 L
mass % of Pb(NO3)2 = 14.0 %
Density = 1.134 g/mL
Step 2: The balanced equation
Pb(NO3)2(aq) + 2 KI(aq) ⇆ PbI2(s) + 2 KNO3(aq)
Step 3: Calculate mass
Mass = density * volume
Mass KI solution = 1.093 g/mL * 99.8 mL
Mass KI solution = 109.08 grams
Mass KI solution = 109.08 grams *0.12 = 13.09 grams
Mass of Pb(NO3)2 solution = 1.134 g/mL * 96.7 mL
Mass of Pb(NO3)2 solution = 109.66 grams
Mass of Pb(NO3)2 solution = 109.66 grams * 0.14 = 15.35 grams
Step 4: Calculate moles
Moles = mass / molar mass
Moles KI = 13.09 grams / 166.0 g/mol
Moles KI = 0.0789 moles
Moles Pb(NO3)2 = 15.35 grams / 331.2 g/mol
Moles Pb(NO3)2 = 0.0463 moles
Step 5: Calculate the limiting reactant
For 1 mol Pb(NO3)2 we need 2 moles KI to produce 1 mol PbI2 and 2 moles KNO3
Ki is the limiting reactant. It will completely be consumed ( 0.0789 moles). Pb(NO3)2 is in excess. There will react 0.0789/2 = 0.03945 moles. There will remain 0.0463 - 0.03945 = 0.00685 moles
Step 6: Calculate moles PbI2
For 1 mol Pb(NO3)2 we need 2 moles KI to produce 1 mol PbI2 and 2 moles KNO3
For 0.0789 moles KI we'll have 0.0789/2 = 0.03945 moles PbI2
Step 7: Calculate mass of PbI2
Mass PbI2 = moles PbI2 * molar mass PbI2
Mass PbI2 = 0.03945 moles * 461.01 g/mol
Mass PbI2 = 18.19 grams
Answer:
Explanation:
Hello,
In this case, we write the reaction again:
In such a way, the first thing we do is to compute the reacting moles of lead (II) nitrate and potassium iodide, by using the concentration, volumes, densities and molar masses, 331.2 g/mol and 166.0 g/mol respectively:
Next, as lead (II) nitrate and potassium iodide are in a 1:2 molar ratio, 0.04635 mol of lead (II) nitrate will completely react with the following moles of potassium nitrate:
But we only have 0.07885 moles, for that reason KI is the limiting reactant, so we compute the yielded grams of lead (II) iodide, whose molar mass is 461.01 g/mol, by using their 2:1 molar ratio:
Best regards.
Answer:
Molarity= 4M
Explanation:
n= CV
24= C×6,
C= 24/6 = 4M
Answer:4M
Explanation:
Number of moles=24
Volume=6L
Molarity=number of moles ➗ volume
Molarity=24 ➗ 6
Molarity=4M
The electron pair geometry of a phosphine, PH3, molecule is tetrahedral, though the molecule itself takes on a trigonal pyramidal shape due to the presence of a lone pair of electrons on the phosphorus atom.
The electron pair geometry for a phosphine molecule, PH3, is tetrahedral. In PH3, the phosphorus atom is the central atom surrounded by three hydrogen atoms. However, it is important to note that the phosphorus atom also has a lone pair of electrons. The lone pair occupies more space than bonding pairs, causing the molecule to take on a trigonal pyramidal molecular geometry. Despite the molecular geometry, the electron pair geometry is considered tetrahedral because it accounts for all regions of electron density, including lone pairs.
#SPJ6
The electron pair geometry for a phosphine molecule (PH3) is tetrahedral. This refers to the spatial arrangement of regions of electron density around the central atom, phosphorus, which is bonded to three hydrogen atoms and has one lone pair of electrons.
The electron pair geometry for a phosphine molecule, PH3, is best described as tetrahedral. Even though the PH3 molecule is not tetrahedral, the electron pair geometry refers to the spatial arrangement of regions of electron density around the central atom, in this case, phosphorus. Phosphorus in the PH3 molecule is bonded to three hydrogen atoms and has one lone pair of electrons. These four regions of electron density adopt a tetrahedral arrangement to minimize electron-electron repulsion. Please note that the molecular structure of PH3 is trigonal pyramidal as lone pairs are not included while determining the molecular geometry.
#SPJ6