Why was plastic first invented? How is plastic bad for the environment?​

Answers

Answer 1
Answer:

Answer: The first plastic based on a synthetic polymer was invented in 1907.  Plastic sticks around in the environment for ages, threatening wildlife and spreading toxins.

Answer 2
Answer: Not sure how it was invented but it had for the environment cause it causes plastic particles killing anything or endangering those that consume it.

Related Questions

A metallic bond is formed between what two types of elements
Assume a gasoline is isooctane, which has a density of 0.692 g/ml. What is the mass of 3.8 gal of the gasoline (1 gal = 3.78 l)?
100.0 g of liquid copper (molar mass 63.546 g/mol; melting point 1358 K; density 8.02 g/mL) is placed in a rigid container of volume 10.0 L at temperature 1508 K. The container is placed in an evacuated chamber and a small hole of area 3.23 mm2 is made in the upper container wall. After 2.00 hours, the mass of copper in the container has decreased by 1 0.0168 g. Assuming the mass loss is due to effusion, calculate the vapor pressure of liquid copper at 1508 K. Hint: because the liquid constantly evaporates, the pressure inside the container is constant
Identify when an object has a kinetic energy of zero joules.Question 2 options:A. as a pendulum swings downward.B. when the energy has been destroyed.C. just after a ball it leaves your hand pitching a ball.D. when an object is no longer in motion.
Copper and iron(III) nitrate Does it have a reaction?

After a severe accident, a person can write and talk but has to learn towalk again. What part of the nervous system was probably affected? Explain
why?

Answers

Answer:

Answer is cerebellum. And this is the right answer

Brain, because cerebellum (part of the brain) maintain a person's sense of balance

What pressure is exerted on the bottom of a 0.500-m-wide by 0.900-m-long gas tank that can hold 50.0 kg of gasoline by the weight of the gasoline in it when it is full?

Answers

Answer:

1088.89 Pa

Explanation:

According to the Newton's second law of motion:-

Force=Mass* Acceleration

Mass = 50.0 kg

Acceleration = g = 9.81 m/s²

So,  

Force=50.0* 9.8\ kgm/s^2

Force = 490 N

Area of the base = length* breath = 0.500* 0.900 m² = 0.45 m²

Pressure = Force/Area = (490\ N)/(0.45\ m^2) = 1088.89 Pa

A balloon filled with 0.500 L of air at sea level is submerged in the water to a depth that produces a pressure of 3.25 atm. What is the volume of the balloon at this depth? a. 0.154 L b. 6.50 L c. 0.615 L d. 1.63 L d. None of the above

Answers

"0.154 L" is the volume of the balloon.

Given:

Pressure,

  • P_1 = 1 \ atm
  • P_2 = 3.25 \ atm

Volume,

  • V_1 = 0.5 \ L
  • V_2 = ?

As we know,

P_1. V_1 = P_2 .V_2

or,

→      V_2 = (P_1. V_1)/(P_1)

By substituting the values, we get

            = (0.5* 1)/(3.25)

            = (0.5)/(3.25)

            = 0.154 \ L

Thus the above answer i.e., "option a" is correct.

Learn more:

brainly.com/question/16365001

Answer:

Option a . 0.154L

Explanation:

P₁ . V₁ = P₂ . V₂

when we have constant temperature and constant moles for a certain gas.

At sea level, pressure is 1 atm so:

0.5 L . 1atm = V₂ . 3.25 atm

(0.5L . 1atm) / 3.25 atm = 0.154 L

A 99.8 mL sample of a solution that is 12.0% KI by mass (d: 1.093 g/mL) is added to 96.7 mL of another solution that is 14.0% Pb(NO3)2 by mass (d: 1.134 g/mL). How many grams of PbI2 should form?Pb(NO3)2(aq) + 2 KI(aq) PbI2(s) + 2 KNO3(aq)

Answers

Answer:

Mass PbI2 = 18.19 grams

Explanation:

Step 1: Data given

Volume solution = 99.8 mL = 0.0998 L

mass % KI = 12.0 %

Density = 1.093 g/mL

Volume of the other solution = 96.7 mL = 0.967 L

mass % of Pb(NO3)2 = 14.0 %

Density = 1.134 g/mL

Step 2: The balanced equation

Pb(NO3)2(aq) + 2 KI(aq) ⇆ PbI2(s) + 2 KNO3(aq)

Step 3: Calculate mass

Mass = density * volume

Mass KI solution = 1.093 g/mL * 99.8 mL

Mass KI solution = 109.08 grams

Mass KI solution = 109.08 grams *0.12 = 13.09 grams

Mass of Pb(NO3)2 solution = 1.134 g/mL * 96.7 mL

Mass of Pb(NO3)2 solution = 109.66 grams

Mass of Pb(NO3)2 solution = 109.66 grams * 0.14 = 15.35 grams

Step 4: Calculate moles

Moles = mass / molar mass

Moles KI = 13.09 grams / 166.0 g/mol

Moles KI = 0.0789 moles

Moles Pb(NO3)2 = 15.35 grams / 331.2 g/mol

Moles Pb(NO3)2 = 0.0463 moles

Step 5: Calculate the limiting reactant

For 1 mol Pb(NO3)2 we need 2 moles KI to produce 1 mol PbI2 and 2 moles KNO3

Ki is the limiting reactant. It will completely be consumed ( 0.0789 moles). Pb(NO3)2 is in excess. There will react 0.0789/2 = 0.03945 moles. There will remain 0.0463 - 0.03945 = 0.00685 moles

Step 6: Calculate moles PbI2

For 1 mol Pb(NO3)2 we need 2 moles KI to produce 1 mol PbI2 and 2 moles KNO3

For 0.0789 moles KI we'll have 0.0789/2 = 0.03945 moles PbI2

Step 7: Calculate mass of PbI2

Mass PbI2 = moles PbI2 * molar mass PbI2

Mass PbI2 = 0.03945 moles * 461.01 g/mol

Mass PbI2 = 18.19 grams

Answer:

m_(PbI_2)=18.2gPbI_2

Explanation:

Hello,

In this case, we write the reaction again:

Pb(NO_3)_2(aq) + 2 KI(aq)\rightarrow PbI_2(s) + 2 KNO_3(aq)

In such a way, the first thing we do is to compute the reacting moles of lead (II) nitrate and potassium iodide, by using the concentration, volumes, densities and molar masses, 331.2 g/mol and 166.0 g/mol respectively:

n_(Pb(NO_3)_2)=(0.14gPb(NO_3)_2)/(1g\ sln)*(1molPb(NO_3)_2)/(331.2gPb(NO_3)_2)  *(1.134g\ sln)/(1mL\ sln) *96.7mL\ sln\n\nn_(Pb(NO_3)_2)=0.04635molPb(NO_3)_2\n\nn_(KI)=(0.12gKI)/(1g\ sln)*(1molKI)/(166.0gKI)  *(1.093g\ sln)/(1mL\ sln) *99.8mL\ sln\n\nn_(KI)=0.07885molKI

Next, as lead (II) nitrate and potassium iodide are in a 1:2 molar ratio, 0.04635 mol of lead (II) nitrate will completely react with the following moles of potassium nitrate:

0.04635molPb(NO_3)_2*(2molKI)/(1molPb(NO_3)_2) =0.0927molKI

But we only have 0.07885 moles, for that reason KI is the limiting reactant, so we compute the yielded grams of lead (II) iodide, whose molar mass is 461.01 g/mol, by using their 2:1 molar ratio:

m_(PbI_2)=0.07885molKI*(1molPbI_2)/(2molKI) *(461.01gPbI_2)/(1molPbI_2) \n\nm_(PbI_2)=18.2gPbI_2

Best regards.

What is the molarity if 24 moles of solute are dissolved into 6 L of solution?

Answers

Answer:

Molarity= 4M

Explanation:

n= CV

24= C×6,

C= 24/6 = 4M

Answer:4M

Explanation:

Number of moles=24

Volume=6L

Molarity=number of moles ➗ volume

Molarity=24 ➗ 6

Molarity=4M

What is the electron pair geometry for a phosphine molecule, PH3? A) tetrahedral B) bent C) linear D) trigonal pyramidal E) none of the above

Answers

Final answer:

The electron pair geometry of a phosphine, PH3, molecule is tetrahedral, though the molecule itself takes on a trigonal pyramidal shape due to the presence of a lone pair of electrons on the phosphorus atom.

Explanation:

The electron pair geometry for a phosphine molecule, PH3, is tetrahedral. In PH3, the phosphorus atom is the central atom surrounded by three hydrogen atoms. However, it is important to note that the phosphorus atom also has a lone pair of electrons. The lone pair occupies more space than bonding pairs, causing the molecule to take on a trigonal pyramidal molecular geometry. Despite the molecular geometry, the electron pair geometry is considered tetrahedral because it accounts for all regions of electron density, including lone pairs.

Learn more about Electron pair geometry here:

brainly.com/question/35160260

#SPJ6

Final answer:

The electron pair geometry for a phosphine molecule (PH3) is tetrahedral. This refers to the spatial arrangement of regions of electron density around the central atom, phosphorus, which is bonded to three hydrogen atoms and has one lone pair of electrons.

Explanation:

The electron pair geometry for a phosphine molecule, PH3, is best described as tetrahedral. Even though the PH3 molecule is not tetrahedral, the electron pair geometry refers to the spatial arrangement of regions of electron density around the central atom, in this case, phosphorus. Phosphorus in the PH3 molecule is bonded to three hydrogen atoms and has one lone pair of electrons. These four regions of electron density adopt a tetrahedral arrangement to minimize electron-electron repulsion. Please note that the molecular structure of PH3 is trigonal pyramidal as lone pairs are not included while determining the molecular geometry.

Learn more about electron pair geometry here:

brainly.com/question/25440372

#SPJ6