Answer:
B. move more quickly
Explanation:
As a sample of matter is heated, we know that the particles begins to move more quickly.
This is because the temperature of a substance is directly proportional to the average kinetic energy of a system.
Upon heating a sample of matter, the particles tend to move more quickly. This is because the increase in temperature boosts the kinetic energy of the particles, thereby making them move faster.
When a sample of matter is heated, it causes the particles of the matter to move more quickly. This phenomenon is due to the increase in temperature, which leads to an increase in the kinetic energy of the particles. Kinetic energy refers to the energy that an object possesses due to its motion. Hence, as heat supplies energy, it causes atoms and molecules in a matter to move faster. As a result, solids expand and liquids and gases become less dense as their particles spread out to absorb the heat.
#SPJ11
Answer
Density = 7.87g/cm^3
Explanation:
Density is the ratio of mass of the given object to the volume of the object, in this question iron is the given object, then we make use of atomic number of iron
Given:
Length= 287pm = 287*10^-10cm
Atomic mass of Fe= 56.0u
Z=2(for body centered cubic unit cell)
Avogadro number (N 0)=6.022× 10^23
Density= ZM/a^3 × N
Where
Z= body centered cubic unit cell
Then substitute
N= Avogadro's number
a=Length
Density = (2× 56)/(287*10^-10cm)^3 × (6.022 × 10^23)
Density = 7.87g/cm^3
The density of iron in a body-centered cubic unit cell can be calculated using the mass and volume of the unit cell.
The density of iron can be calculated using the formula: density = mass/volume. To determine the mass of the unit cell, we need to know the molar mass of iron and the number of atoms in the unit cell. The molar mass of iron is 55.845 g/mol, and there are two iron atoms in the body-centered cubic unit cell of iron. The volume of the unit cell can be calculated using the formula: volume = (edge length)^3.
Putting these values into the formula, we get:
density = (2 * 55.845 g/mol) / ((287 pm)^3)
Converting the edge length to meters (1 pm = 1e-12 m) and calculating, we find that the density of iron is approximately 7.86 g/cm³.
#SPJ11
Answer:
This means the the sign of q for the reaction was _NEGATIVE _____ and the reaction was _EXOTHERMIC_____.
Explanation:
In calorimetry, when heat is absorbed by the solution, the q-value of the solution will have a positive value. This means that the reaction will produce heat for the solution to absorb and thus the q-value for the reaction will be negative. This is an exothermic reaction.
Whereas, when heat is absorbed from the solution, the q-value for the solution will have a negative value. This means that the reaction will absorb heat from the solution and so the reaction is endothermic, and q value for the reaction is positive.
So, from the question, since the q-value of water is positive, it means that heat is absorbed by the solution and the reaction will produce a negative value of q and it's an exothermic reaction because the reaction produces heat for the solution.
Answer:
Diatomic Molecule
Explanation:
Answer:
joe mama
Explanation:
400 + 20 + 420
As the temperature of a liquid or stable will increase its vapor strain additionally will increase. Conversely, vapor strain decreases because the temperature decreases.
The better the vapor strain of a substance, the extra the awareness of the compound withinside the gaseous section and the extra the quantity of vaporization
. Liquids range substantially of their vapor pressures. substance with a excessive vapor strain at everyday temperatures is regularly called volatile. The strain exhibited through vapor gift above a liquid floor is referred to as vapor strain. As the temperature of a liquid will increase, the kinetic strength of its molecules additionally will increase.
Read more about vapour:
#SPJ4