Answer:
Saturated solution
We should raise the temperature to increase the amount of glucose in the solution without adding more glucose.
Explanation:
Step 1: Calculate the mass of water
The density of water at 30°C is 0.996 g/mL. We use this data to calculate the mass corresponding to 400 mL.
Step 2: Calculate the mass of glucose per 100 g of water
550 g of glucose were added to 398 g of water. Let's calculate the mass of glucose per 100 g of water.
Step 3: Classify the solution
The solubility represents the maximum amount of solute that can be dissolved per 100 g of water. Since the solubility of glucose is 125 g Glucose/100 g of water and we attempt to dissolve 138 g of Glucose/100 g of water, some of the Glucose will not be dissolved. The solution will have the maximum amount of solute possible so it would be saturated. We could increase the amount of glucose in the solution by raising the temperature to increase the solubility of glucose in water.
The solution made by adding 550 g of glucose to 400 mL of water at 30°C is saturated. If you want to increase the amount of glucose in the solution without adding more glucose, you can increase the temperature.
The solution made by adding 550 g of glucose to 400 mL of water at 30°C is saturated.
Since the solubility of glucose at 30°C is 125 g/100 g water, adding 550 g of glucose to 400 mL of water exceeds the maximum amount of glucose that can dissolve in the given amount of water.
To increase the amount of glucose in the solution without adding more glucose, you can increase the temperature. Higher temperatures generally increase the solubility of solutes in water. By increasing the temperature, you can dissolve more glucose in the solution.
Learn more about solubility here:
#SPJ3
B. -1,+1,0
C. -2,+3,-1
D. 0,0,0
Three resonance structures contribute to the structure of dinitrogen monoxide.
The resonance structure is invoked when a single structure can not sufficiently explain all the bonding properties of a compound. All the various contributing structures contribute to the final structure of the compound but not all to the same degree.
There are three resonance structures of dinitrogen monoxide. The most stable structure is always the structure that has the formal charges as -1, +1 and zero as shown.
Learn more: brainly.com/question/14283892
Answer:
A. 0, +1, -1
Explanation:
You can draw the lewis structure for NNO 3 ways: With two double bonds N=N=O, with a triple bond between the N and O and single bond between the two N's, or a triple bond between the two N's and a single bond between the N and O.
The goal is to have formal charges that are as small as possible, to have no identical formal charges on adjacent atoms, and to have the most negative formal charge on the most electronegative atom. The most stable structure is the one with the triple bond between the two N's because it gives the formal charges 0, 1, and -1 respectively. Unlike the other two structures, the negative formal charge is correctly placed on O, the most electronegative atom.
The formula for osmotic pressure is:
where is osmotic pressure, is van't Hoff's factor, molarity, is Ideal gas constant, and T is Temperature.
= 132 atm
The van't Hoff's factor for glucose, = 1
Substituting the values in the above equation we get,
So, the molarity of the solution is .
"0.154 L" is the volume of the balloon.
Given:
Pressure,
Volume,
As we know,
→
or,
→
By substituting the values, we get
Thus the above answer i.e., "option a" is correct.
Learn more:
Answer:
Option a . 0.154L
Explanation:
P₁ . V₁ = P₂ . V₂
when we have constant temperature and constant moles for a certain gas.
At sea level, pressure is 1 atm so:
0.5 L . 1atm = V₂ . 3.25 atm
(0.5L . 1atm) / 3.25 atm = 0.154 L
Answer:
15766
Explanation:
The average molecular weight of the polypropylene = 663419 g/mol.
The mass of the repeating unit , monomer which is propylene = 42.08 g/mol
The degree of polymerization is:
Degree of polymerization = 15766
Answer:
Because as the concentration is diminished, the capacity to transfer electricity is diminished as well.
Explanation:
Hello!
In this case, since electrolytes are substances that are able to conduct the electricity in aqueous media (solutions in which water is the the solvent) because they have the capacity to form ions with both positive and negative charges, due to the fact that HCl is a strong acid, we notice it is fully ionized in solution and therefore it is a strong electrolyte. However, when the concentration is diminished, we can notice that strength is diminished as well because less ions will have the capacity to transfer the electricity and therefore it'd become a poor conductor or weak electrolyte.
Best regards!
How many atoms of each element are in
the equation?
Answer:
There are 6 Carbon dioxides, and 6 waters, but there are 6 carbons, 18 oxygens, and 12 hydrogens.
Explanation:
Answer:
6 carbon atoms
18 oxygen atoms
12 hydrogen atoms