Potential energy or stored energy, and kinetic energy, the energy due to motion can be balanced in the process of converting kinetic energy to potential energy during an uphill motion
The correct option for, which situation shows potential energy and kinetic energy are balanced is option;
A roller coaster car going uphill
The reason the selected option is correct is as follows:
Potential energy is the energy that is due to the relative position of an item in relation to a ground or zero state. The formula for potential energy due to the elevation is given as follows;
Potential energy, P.E. = m·g·h
Kinetic energy is the energy that is due to motion. The kinetic energy of an item is given as follows;
Kinetic energy, K.E. = (1/2) × m × v²
The potential and kinetic energy of a body is balanced when we have;
P.E. = m·g·h = K.E. = (1/2)·m·v²
Which gives;
g·h = (1/2)·v²
Therefore, a point is reached as the an body moves up a heal, where the potential energy (the energy due to height of the object) and the kinetic energy (the energy due to current speed) of the object are equal
The correct situation which shows potential energy and kinetic energy are balanced is therefore; A roller coaster car going uphill
Learn more about potential and kinetic energy here:
−9.6 × 10−8 N
B.
−6.0 × 10−7 N
C.
4.7 × 10−36 N
D.
2.9 × 10−17 N
Answer:
A:-9.6×10-8 N
Explanation:
is correct answer
Answer:
The change in momentum increases because the impact time increases.
Explanation:
The change in momentum of an object is also called impulse (J), and it is equal to
where
F is the force applied to the object
is the time taken for the change in momentum of the object to occur (the impact time)
From the formula above, we can notice that:
- the larger the force, the larger the change in momentum
- the larger the impact time, the larger the change in momentum
In the example of the baseball caught by the glove, when the glove moves backward, the time taken for the ball to stop increases (due to the movement of the gloves). Looking at the formula, we see that this means that the impulse (the change in momentum) increases.
Answer:
The change in momentum stays the same because the ball still comes to a stop.
Explanation:
here we know that momentum is defined as the product of mass and velocity
so here we know that
now we know that formula to find the change in momentum is given as
now when player moves his hand backwards then in this case final speed of the ball is zero and initial speed is same
So here we can say that there is no change in the equation but only the the to stop the ball is increased.
So here change in momentum will remain the same