Answer:
The last one
1m = 100 cm
Explanation:
If you do not trust me look it up
Depending on its size, composition, and the eccentricity of its orbit, that scanty description could apply to a planet, an asteroid, a comet, a meteoroid, or another star.
The intensity of the electromagnetic wave which travels in an insulating magnetic material in a medium is 5.766×10⁻⁸ W/m².
The intensity of a wave is the total power delivered per unit area. It can be given as,
It can also be given as,
Here, () is relative permeability, () is physical constant, (k) is dielectric constant, (E) is the amplitude of electric field, and is the permittivity of free space.
Here, the electromagnetic wave with frequency 65.0hz travels in an insulating magnetic material that has dielectric constant 3.64 and relative permeability 5.18 at this frequency.
As the electric field has amplitude 7.20×10−3v/m. Thus, put the values in the above formula to find the intensity as,
Hence, the intensity of the electromagnetic wave which travels in an insulating magnetic material in a medium is 5.766×10⁻⁸ W/m².
Learn more about the intensity of the wave here;
Answer: Physiologic response to fear is very similar to that of PTSD and stress. Fear is accompanied by increased heart rate due to the release of adrenaline, sympathetic nervous system is aroused. The release of adrenaline also causes increased sweating, pulse and blood pressure. In line with this, the parasympathetic nervous system experiences reduced activity such as decrease in digestion.
b nonelectrolyte
c liquid
d solid
Answer:
B. Nonelectrolyte.
Explanation:
Nonelectrolytes do not dissociate into ions in solution, hence, nonelectrolyte solutions don't conduct electricity.
A non-electrolyte doesn’t conduct electric current even when it forms a solution.
Answer: Option B
Explanation:
Where electrolytes are defined as the compounds that can conduct electric current with mobile ions existing in its solution, non-electrolytes are the compounds that don’t behave the same either in the aqueous solution or in the molten state.
This is all because these compounds don’t produce mobile ions to flow from one electrode to the other and hence conduct electric flow in the solution. Sugar and ethanol are the best examples of non-electrolytes that don’t induce electric current even after getting dissolved in water.
Answer:
If the acceleration is constant, the movements equations are:
a(t) = A.
for the velocity we can integrate over time:
v(t) = A*t + v0
where v0 is a constant of integration (the initial velocity), for the distance traveled between t = 0 units and t = 10 units, we can solve the integral:
Where to obtain the actual distance you can replace the constant acceleration A and the initial velocity v0.
The man can climb , before the ladders starts to slip.
A - point at the top of the ladder
B - point at the bottom of the ladder
C - point where the man is positioned in the ladder
L- the length of the ladder
α - angle between ladder and ground
x - distance between C and B
The forces act on the ladder,
Horizontal reaction force (T) of the wall against the ladder
Vertical (upward) reaction force (R) of ground against the ladder.
Frictionalhorizontal ( to the left ) force (F)
Vertical( downwards) of the man,
mg = 75 Kg x 9.8 m/s² = 735 N
in static conditions,
∑Fx = T - F = 0 Since, T = F
∑Fy = mg - R = 0 Since, 735 - R = 0, R = 735
∑ Torques(b) = 0
In point B the torque produced by forces R and F is Zero
Then:
∑Torques(b) = 0
And the arm lever for each force,
mg = 735
Since, ∑Torques(b) = 0
Since,T = F
F < μR the ladder will starts slipping over the ground
μ(s) = 0.25
Therefore, the man can climb , before the ladders starts to slip. \
To know more about Torque,
Answer:
x (max) = 0,25*L*tanα
Explanation:
Letá call
A: point at the top of the ladder
B: the point at the bottom of the ladder
C: point where the man is up the ladder
L the length of the ladder
α angle between ladder and ground
"x" distance between C and B
Description
The following forces act on the ladder
Point A: horizontal (to the right) reaction (T) of the wall against the ladder
Point B : Vertical (upwards) reaction (R) of ground against the ladder
frictional horizontal ( to the left ) force (F)
Point C : Weight (vertical downwards)) of the man mg
mg = 75 Kg * 9,8 m/s² mg = 735 [N]
Then in static conditions:
∑Fx = T - F = 0 ⇒ T = F
∑Fy = mg - R = 0 ⇒ 735 - R = 0 ⇒ R = 735
∑Torques(b) = 0
Note: In point B the torque produced by forces R and F are equal to 0
Then:
∑Torques(b) = 0
And the arm lever for each force is:
mg = 735
d₁ for mg and d₂ for T
cos α = d₁/x then d₁ = x*cosα
sin α = d₂ / L then d₂ = L*sinα
Then:
∑Torques(b) = 0 ⇒ 735*x*cosα - T*L*sinα = 0
735*x*cosα = T*L*sinα
T = F then 735*x*cosα = F*L*sinα
F = (735)*x*cosα/L*sinα cos α / sinα = cotgα = 1/tanα
F = (735)*x*cotanα/L or F = (735)*x/L*tanα
When F < μ* R the ladder will stars slippering over the ground
μ(s) = 0,25 0,25*R = 735*x/L*tanα
x = 0,25*R*tanα*L/735
But R = mg = 735 then
0,25*L*tanα = x
Then x (max) = 0,25*L*tanα