Answer:
......................
B) All protons align opposite to the field.
C) Some protons align with the field and some align opposite to it.
D) All protons assume a random orientation.
On account of external magnetic field, the protons will align with the magnetic field. Hence, option (a) is correct.
The given problem is based on the concept of magnetic field. The region where the magnetic force is experienced is known as magnetic field. Generally, the protons are the charged entities carrying the positive polarity and are one of the major constituents of modern atomic structure.
Thus, we can conclude that on account of external magnetic field, the protons will align with the field.
Learn more about the magnetic field here:
Answer:
Some protons align with the field and some align opposite to it.
Explanation:
Majority align to the field because these protons tend to act like small magnets under the effect of this external field
B.1985
C.1995
D.2005
The correct answer is C. 1995
Explanation:
The graph shows the changes in the harvest of Atlantic cod. In general, this graph illustrates how the peak occurred in the 1980s but then there was a sudden and sharp decline in 1995. Indeed, 1995 is the year with the lowest number of harvested cod as in this year there were approximately least than 10 thousand metric tonnes of cods. Also, this year shows the collapse of fishing stocks or that the population of this fish collapsed, which made it impossible to harvest as many fish as in previous years. According to this, the year that shows the collapse of fishing stocks is 1995.
To solve this problem, it is necessary to apply the concepts related to the conservation of momentum, the kinematic equations for the description of linear motion and the definition of friction force since Newton's second law.
The conservation of momentum can be expressed mathematically as
Where,
= Mass of each object
= Initial Velocity of each object
= Final velocity
Replacing we have that,
With the final speed obtained we can determine the acceleration through the linear motion kinematic equations, that is to say
Since there is no initial speed, then
Finally with the acceleration found it is possible to find the friction force from the balance of Forces, like this:
Therefore the Kinetic friction coefficient is 0.7105
You should obtain e/m = 2V/(B^2)(r^2)
3. The magnetic field on the axis of a circular current loop a distance z away is given by
B = mu I R^2 / 2(R^2 + z^2)^ (3/2)
where R is the radius of the loops and I is the current. Using this result , calculate the magnetic field at the midpoint along the axis between the centers of the two current loops that make up the Helmholtz coils, in terms of their number of turns N, current I, and raidus R.Helmholtz coils are separated by a distance equal to their raidus R. You should obtain:
|B| = (4/5)^(3/2) *mu *NI/R = 9.0 x 10^-7 NI/R
where B is magnetic field in tesla, I is in current in amps, N is number of turns in each coil, and R is the radius of the coils in meters
Answer:
Explanation:
Magnetic field creates a force perpendicular to a moving charge in its field which is equal to Bev where B is magnetic field , e is amount of charge on the moving charge and v is the velocity of charge particle .
This force provides centripetal force for creation of circular motion. If r be the radius of the circular path
Bev = mv² / r
r = mv / Be
2 ) If an electron is accelerated by an electric field created by potential difference V then electric field
= V / d where d is distance between two points having potential difference v .
force on charged particle
electric field x charge
= V /d x e
work done by field
= force x distance
= V /d x e x d
V e
This is equal to kinetic energy created
V e = 1/2 mv²
= 1/2 m (r²B²e² / m² )
V = r²B²e/ 2 m
e / m = 2 V/ r²B²
3 )
B =
In Helmholtz coils , distance between coil is equal to R so Z = R/2
B =
For N turns of coil and total field due to two coils
B =
=
= 9.0 x 10^-7 NI/R
Answer:
The magnitude and direction of the magnetic field is 0.009014 T in the negative y direction.
Explanation:
Given that,
Speed
Acceleration
We need to calculate the magnetic field
Using formula of magnetic field
....(I)
Using newton's second law
....(II)
From equation (I) and (II)
Put the value into the formula
We need to calculate the direction of the field
Using the right hand rule, point the right hand fingers along the velocity which is in the positive z direction.
Now, if we curl the fingers along the direction of magnetic field that is in the negative y direction, then the thumb will point in the positive x direction.
Hence, The magnitude and direction of the magnetic field is 0.009014 T in the negative y direction.
acceleration of the ball?
Answer:
-54,200 m/s^2
Explanation:
a=(vf-vi)/t