Answer: I believe the answer is an earthquake.
Explanation: Sorry If I am wrong!
Answer:
earthquake
Explanation:
I took the k12 test
Answer:
181.39g of AlCl3 is produced
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
3CuCl2•2H2O + 2Al → 2AlCl3 + 6H2O + 3Cu
Next, we shall determine the mass of Al that reacted and the mass of AlCl3 produced from the balanced equation. This is illustrated below:
Molar mass of Al = 27g/mol
Mass of Al from the balanced equation = 2 x 27 = 54g
Molar mass of AlCl3 = 27 + (3x35.5) = 133.5g/mol
Mass of AlCl3 from the balanced equation = 2 x 133.5 = 267g
Summary:
From the balanced equation above,
54g of Al reacted to produce 267g of AlCl3.
Next, we shall determine the theoretical yield of AlCl3. This can be achieved as shown below:
From the balanced equation above,
54g of Al reacted to produce 267g of AlCl3.
Therefore, 54.81g of Al will react to produce = (54.81 x 267)/54 = 271.01g of AlCl3.
Therefore, the theoretical yield of AlCl3 is 271.01g.
Finally, we shall determine the actual yield of AlCl3 produced from the reaction.
This can be obtain as follow:
Percentage yield of AlCl3 = 66.93%
Theoretical yield of AlCl3 = 271.01g
Actual yield of AlCl3 =?
Percentage yield = Actual yield/Theoretical yield x 100
66.93% = Actual yield /271.01g
Actual yield = 66.93% x 271.01
Actual yield = 66.93/100 x 271.01g
Actual yield = 181.39g.
Therefore, 181.39g of AlCl3 is produced from the reaction.
b. 26.0 g H2SO4 in 200.0 mL solution
c. 15.0 g NaCl dissolved to make 420.0 mL solution
Answer:
a) NaHCO3 = 0.504 M
b) H2SO4 = 1.325 M
c) NaCl = 0.610 M
Explanation:
Step 1: Data given
Moles = mass / molar mass
Molarity = moles / volume
a. 19.5 g NaHCO3 in 460.0 ml solution
Step 1: Data given
Mass NaHCO3 = 19.5 grams
Volume = 460.0 mL = 0.460 L
Molar mass NaHCO3 = 84.0 g/mol
Step 2: Calculate moles NaHCO3
Moles NaHCO3 = 19.5 grams / 84.0 g/mol
Moles NaHCO3 = 0.232 moles
Step 3: Calculate molarity
Molarity = 0.232 moles / 0.460 L
Molarity = 0.504 M
b. 26.0 g H2SO4 in 200.0 mL solution
Step 1: Data given
Mass H2SO4 = 26.0 grams
Volume = 200.0 mL = 0.200 L
Molar mass H2SO4 = 98.08 g/mol
Step 2: Calculate moles H2SO4
Moles H2SO4 = 26.0 grams / 98.08 g/mol
Moles H2SO4 = 0.265 moles
Step 3: Calculate molarity
Molarity = 0.265 moles / 0.200 L
Molarity =1.325 M
c. 15.0 g NaCl dissolved to make 420.0 mL solution
Step 1: Data given
Mass NaCl = 15.0 grams
Volume = 420.0 mL = 0.420 L
Molar mass NaCl = 58.44 g/mol
Step 2: Calculate moles NaCl
Moles NaCl = 15.0 grams / 58.44 g/mol
Moles NaCl = 0.256 moles
Step 3: Calculate molarity
Molarity = 0.256 moles / 0.420 L
Molarity =0.610 M
Answer :
Sugar : Compound
Air : Homogeneous mixture
Hot tea : Homogeneous mixture
Salt water : Homogeneous mixture
Explanation :
Element : It is a pure substance which is composed of atoms of similar elements.
Compound : It is a pure substance which is made from atoms of different elements combined together in a fixed ratio by mass.
Heterogeneous mixtures : It is a mixture that has non-uniform composition throughout the solution and the particle size or shapes are also different.
There is a physical boundary between the dispersed phase and dispersion medium.
Homogeneous mixtures : It is a mixture that has uniform composition throughout the solution and the particle size or shapes are not different.
There is no physical boundary between the dispersed phase and dispersion medium.
As per question,
Sugar : It is a compound that is made from atoms of different elements combined together in a fixed ratio by mass.
Air : It is a homogeneous mixture of the gaseous substances of nitrogen, oxygen, and smaller amounts of other substances.
Hot tea : It is a homogeneous mixture because its composition is the same throughout the solution.
Salt water : It is a homogeneous mixture because its composition is the same throughout the solution.
Sugar compound
Air Homogeneous mixture
Hot tea Homogeneous mixture
Salt water Homogeneous mixture
Element:
An element is a simplest type of a pure substance which is composed of only one type of matter. For examples; silver, gold platinum etc.
Pure substance:
A compound is a pure substance which is composed of two or more type of matter in definite proportion. For examples; water which is composed by Hydrogen and oxygen etc.
Mixture:
A mixture is made from two or more type of matter in any proportion. Mixture are generally two types:
1. Homogeneous mixture
This is also known as solution, in which the composition of the substances is uniform.
Lemon-flavored water is an example of homogeneous mixture because in this the composition of the substances is uniform.
2. Heterogeneous mixture
In this form of mixture the composition of substance are not uniform and the component of mixture also visible.
Stuffed mushrooms is an example of Heterogeneous mixture because in this form of mixture the composition of substance are not uniform and the component of mixture also visible.
Answer:
How do u post a picture as the question
PLEASE HELP
First of all altitude, is the height of anything especially above sea level. So when your at different altitudes its hotter or colder. Like outside the higher that water gets it freezes cause it going all the way up to the cold mountains and as you go down in altitude depending on the day it gets warmer and evaporates.
Sorry, I don't know if I explained it well, hope I helped you out! :)
Answer: See attachment.
Explanation:
Exceptions to the octet rule fall into three categories:
In addition to the 3s and 3p orbitals, xenon also has 3d orbitals that can be used in bonding. These orbitals enable xenon to form an expanded octet.