Answer:
d. supersaturated.
Explanation:
A solution naturally contains a solute and a solvent. The solute is the solid substance that dissolves in the solvent, which is usually a liquid substance. A solution has a maximum amount of solute that can dissolve in its constituent solvent.
However, when the amount of dissolved solute in a solution at a given temperature is greater than the amount that can permanently remain in the solution at that temperature, the solution is said to be SUPERSATURATED. This means that the solution contains more than the maximum amount of solute.
-do not dissolve in water
-have high melting points
-have low melting points
-dissolve easily in water
-conduct electricity when melted
Answer:
high melting points, dissolve easily in water, conduct electricity when melted.
Explanation:
I'm pretty sure
In a reaction where two moles of C3H8 react with an excess of oxygen, the ∆H would be -4400 kJ, double the ∆H value when only one mole is reacted.
The given reaction, C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O, has a ∆H of –2200 kJ. This represents the energy change for the reaction involving one mole of C3H8. When two moles of C3H8 react, the ∆H will be double that of the given ∆H. Therefore, when two moles of C3H8 react with excess oxygen, the ∆H would be -4400 kJ. This is because the ∆H for a reaction is directly proportional to the amount of substance reacted, hence when two moles of C3H8 are reacted, the ∆H is doubled.
#SPJ12
Answer:
precipitate
Explanation:
Precipitation is the creation of a solid from a solution. When the reaction occurs in a liquid solution, the solid formed is called the 'precipitate'. The chemical that causes the solid to form is called the 'precipitant'.
hope i helped :)
a. The reaction has no effect on the water. The kinetic energy of the water molecules remains the same.
b. The reaction causes the temperature of the water to increase. The kinetic energy of the water molecules increases.
c. The reaction causes the temperature of the water to decrease. The kinetic energy of the water molecules decreases.
d. The reaction causes the temperature of the water to decrease. Then, the water gains heat from the surroundings and the kinetic energy of the water molecules increases.
When a student is warming a chemical in a container using a special burner, it is very important to focus on safety by using the right safety tools.
First, the student needs to wear the right safety clothes like a lab coat, gloves, and goggles to protect themselves from getting splashed or hurt by chemicals. A lab coat stops chemicals from touching the skin, gloves keep the hands safe, and safety goggles protect the eyes from chemicals
and hot things.
Furthermore, using a fume hood is necessary to make sure there is enough fresh air circulating and to remove any dangerous fumes or gases that might be released while heating things up.
Read more about safety equipment here:
#SPJ3
Answer:The student should be wearing a lab coat or maybe an apron to prevent chemicals from spilling or exploding onto their clothes, I do recommend a lab coat better though because it can protect your skin better. Next, make sure while messing with chemicals you are always wearing goggles, if you are not wearing them there is a chance that after touching chemicals you could touch your eyes. And that brings me to washing your hands straight away after messing with chemicals. You could also wear gloves and just take them off when you're done but if you don't have clean hands afterward you could always put the chemicals all over your skin. But in case you do touch your eyes there is always an emergency eyewash station somewhere in the lab room. And if you are to get Chemicals on your skin, in your hair, on your clothes, or to be on fire, there shall be a shower somewhere to get rid of that. But if you read the instructions or listen closely to the teacher you shall have no problem.
Explanation:
I kinda got off topic
(B) Ca3PO6
(C) Ca4P2O4
(D) Ca3P2O8 (or Ca3(PO4)2)
(E) CaPO4
Answer:
D) empirical formula is: C₃P₂O₈
Explanation:
Given:
Mass % Calcium (Ca) = 38.7%
Mass % Phosphorus (P) = 19.9%
Mass % oxygen (O) = 41.2 %
This implies that for a 100 g sample of the unknown compound:
Mass Ca = 38.7 g
Mass P = 19.9 g
Mass O = 41.2 g
Step 1: Calculate the moles of Ca, P, O
Atomic mass Ca = 40.08 g/mol
Atomic mass P = 30.97 g/mol
Atomic mass O = 16.00 g/mol
Step 2: Calculate the molar ratio
Step 3: Calculate the closest whole number ratio
C: P: O = 1.50 : 1.00 : 4.00
C : P : O = 3:2:8
Therefore, the empirical formula is: C₃P₂O₈
The mass percentage composition of a compound can be used to determine its empirical formula. For a compound with 38.7% calcium (Ca), 19.9% phosphorus (P), and 41.2% oxygen (O), the empirical formula is Ca3(PO4)2.
To solve this problem, we're going to use the atomic mass percentages to determine the empirical formula of the compound.
We do this by assuming we have a 100g sample of the compound. Therefore:
The mass of calcium (Ca) is 38.7g.
The mass of phosphorus (P) is 19.9g.
The mass of oxygen (O) is 41.2g.
Next, we calculate how many moles we have of each element:
Then, we divide each of these numbers by the smallest number of moles, which is 0.643 (P):
#SPJ3