Answer:
sorry if I get this wrong I think it is C
Explanation:
B. Rh
C. Hf
D. Co
Answer: C
Explanation:
Answer : The rate for the formation of hydrogen is, 1.05 M/s
Explanation :
The general rate of reaction is,
Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The expression for rate of reaction will be :
From this we conclude that,
In the rate of reaction, A and B are the reactants and C and D are the products.
a, b, c and d are the stoichiometric coefficient of A, B, C and D respectively.
The negative sign along with the reactant terms is used simply to show that the concentration of the reactant is decreasing and positive sign along with the product terms is used simply to show that the concentration of the product is increasing.
The given rate of reaction is,
The expression for rate of reaction :
The rate of reaction expression is:
As we are given that:
Now we to determine the rate for the formation of hydrogen.
Thus, the rate for the formation of hydrogen is, 1.05 M/s
Explanation:
Starting moles of ethanol acid = 0.020 mol
At the equilibrium 50 % of the ethanol acid molecules reacted
∴ Moles of ethanol acid reacted = 0.020 mol * 50 %/100 %
= 0.010 mol
Moles of ethanol acid remain = 0.020 mol + 0.010 mol = 0.010 mol
Moles of the product gas formed are calculated as
0.010 mol CH3COOH * 1 mol / 2 mol CH3COOH
= 0.005 mol
Therefore at the equilibrium total moles of gas present in the vessel are 0.010 mol CH3COOH and 0.005 mol
That is total gas moles at equilibrium = 0.010 mol + 0.005 mol = 0.015 mol
Now Calculate the pressure :
0.020 mol gas has pressure of 0.74 atm therefore at the same condition what will be the pressure exerted by 0.015 mol gas
P1/n1 = P2/n2
P2 = P1*n2 / n1
= 0.74 atm * 0.015 mol / 0.020 mol
= 0.555 atm
Answer:
verdadero/a
falso/b
verdadero/c
Explanation:
Answer:
The temperature of the system once equilibrium is reached, is 292 Kelvin
Explanation:
Step 1: Data given
Mass of H2O = 34.05 grams
⇒ temperature = 273 K
Mass of H2O at 310 K = 185 grams
Pressure = 1 bar = 0.9869 atm
Step 2: Calculate the final temperature
n(ice)*ΔH(ice fusion) + n(ice)*CP(H2O)(Tfinal- Ti,ice) + n(H20)*CP(H2O)*(Tfinal-Ti,H2O) = 0
Tfinal = [n(ice)*CP(ice)*Ti(ice) + n(H2O)*CP(H2O)*Ti(H20) - n(ice)*ΔH(ice fusion)] / [n(ice)*CP(ice) +n(H2O)*CP(H2O)]
⇒ with n(ice) = moles of ice = 34.05 grams / 18.02 g/mol = 1.890 moles
⇒ with CP(ice) = 75.3 J/K*mol
⇒ with Ti(ice) = the initial temperature of ice = 273 K
⇒ with n(H2O) = the moles of water = 185.0 grams / 18.02 g/mol = 10.27 moles
⇒ with CP(H2O) = CP(ice) = 75.3 J/K*mol
⇒ with Ti(H2O) = the initial temperature of the water = 310 K
⇒ with ΔH(ice, fusion) = 6010 J/mol
Tfinal = [1.890 moles * 75.3 J/K*mol * 273 + 10.27 mol * 75.3 J/K*mol * 310 K - 1.890 moles * 6010 J/mol] / [1.890 moles *75.3J/k*mol + 10.27 mol * 75.3 J/K*mol]
38852.541 + 239732.61 - 11358.9 = 267226.251
Tfinal= 291.8 ≈ 292 Kelvin
The temperature of the system once equilibrium is reached, is 292 Kelvin
We must use the principle of conservation of energy to equate the heat gained by the ice to the heat lost by the water, in a given equation, to calculate the final equilibrium temperature.
The topic here is thermodynamics, specifically calculating the final equilibrium temperature when two substances are mixed. Given the information, we can apply the principle of conservation of energy, which in this context is the heat gained by one substance is equal to the heat lost by the other. In this case, the heat gained by the ice (H2O(s)) as it melts and increases in temperature is equal to the heat lost by the water (H2O(l)). Therefore, we have the equation 34.05 g * 1 kcal/kg * K *(T - 273 K) + 34.05 g * 80 Cal/g = 185 g * 1 kcal/kg*K *(310 K - T) where T is the final temperature to be solved.
#SPJ3
b) The final rms molecular speed will be the same for both gases.
c) The final average kinetic energy of a molecule will be the same for both gases.
Answer:
a,c are correct
Explanation:
a) On mixing two gases the final temperature of both the gases becomes the same. The heat will flow from high temp. gas to lower temp gas till the temp of both gases become equal (Thermal equilibrium). This is correct.
b) The rms speed of the molecule is inversely proportional to its molar mass so the final rsm will not be the same. This is incorrect.
c) The average kinetic energy of the system will remain the same. Hence this is also correct.