Answer:
s = 22.352 m/s
Explanation:
Given data:
Time taken = 0.5 hours
Distance cover = 25 miles
Car speed = ?
Solution:
First of all we will convert the units.
1 hour = 3600 sec
0.5 hr ×3600 sec / 1hr = 1800 sec
miles to meter:
25 mi × 1609 m/ 1 mi = 40233.6 m
Formula:
s = d/t
s = speed
d = distance
t = time
Now we will put the values in formula.
s = 40233.6 m / 1800 sec
s = 22.352 m/s
The speed of the car, calculated by dividing the distance travelled (25 miles) by the time taken (0.5 hours), is 50 miles per hour.
The subject of the question falls under Mathematics, specifically a section of it named rate, time, and distance problems. The problem is asking us to calculate the speed of a car which can be obtained by dividing the distance travelled by the time taken. Given that the distance travelled by the car is 25 miles and the time taken is 0.5 hours, we can calculate the speed as follows.
So, the speed of the car is 50 miles per hour.
#SPJ3
Answer:
[K2SO4] = 4,75x10⁻⁷M ; [K⁺] = 9.50x10⁻⁷M ; [SO4⁻²] = 4,75x10⁻⁷M
SO4⁻²: 0.045ppm ; K⁺: 0.037ppm
[SO4⁻²] = 4,70x10⁻⁷ F
Explanation:
Determine the equation
K2SO4 → 2K⁺ + SO4⁻²
Each mole of potassium sulfate generates two moles of potassium cation and one mole of sulfate anion
Molar mass K2SO4: 174.26 g/m
Moles of K2SO4: grams / molar mass
2.07x10⁻⁴g / 174.26 g/m = 1.18x10⁻⁶ moles
Molarity: Moles of solute in 1 L of solution
1.18x10⁻⁶ moles / 2.5 L = 4,75x10⁻⁷M (K2SO4)
K⁺ : 4,75x10⁻⁷M . 2 = 9.50x10⁻⁷M
SO4⁻²: 4,75x10⁻⁷ M
1 mol of K2SO4 has 2 moles of K and 1 mol of SO4
1.18x10⁻⁶ moles of K2SO4 has 1.18x10⁻⁶ moles of SO4 and 2.37x10⁻⁶ moles of K.
1.18x10⁻⁶ moles of SO4⁻² are 1.13x10⁻⁴ grams (moles. molar mass)
2.37x10⁻⁶ moles of K are 9.26x10⁻⁵ grams (moles. molar mass)
These grams are in 2.5 L of water, so we need μg/mL to get ppm
2.5 L = 2500 mL
1.13x10⁻⁴ grams SO4⁻² are 113.35 μg (1 μg = 1x10⁶ g)
9.26x10⁻⁵ grams K⁺ are 92.6 μg (1 μg = 1x10⁶ g)
113.35 μg /2500 mL = 0.045ppm
92.6 μg /2500 mL = 0.037ppm
Formal concentration of SO4⁻² :
Formality = Number of formula weight of solute / Volume of solution (L)
(1.13x10⁻⁴ grams / 96.06 g ) / 2.5 L = 4,70x10⁻⁷ F
Answer:
You can eat one chunk white tuna of 6 oz every 21,5 minutes
And, you can eat one chunk linght tuna of 6 oz every 5 minutes
Explanation:
The exposure to mercury may cause serious health problems, and is a threat to the development of the child in utero and early in life.
If you weight 68 kg you can eat:
68 kg * 0,1mgHg/ kg = 6,8 mg Hg per day
Thus, you can eat:
6,8 mg Hg * 1 kg tuna/ 0,6 mg Hg = 11,33 kg of chunk white tuna per day
In ounces:
11,33 kg * 35,274oz/ 1 kg = 400 oz per day
You can eat 66,7 6 ounces of chunk white tuna per day. One every 21,5 minutes
Thus, you can eat:
6,8 mg Hg * 1 kg tuna/ 0,14 mg Hg = 48,57 kg of chunk white tuna per day
In ounces:
48,57 kg * 35,274oz/ 1 kg = 1713 oz per day
You can eat 285,6 6 ounces of chunk white tuna per day. One every 5 minutes
I hope it helps!
B:Some offspring are more likely to survive a disease.
C:Less energy is required to reproduce.
D:The population can increase from only one parent.
E:The population can increase quickly.
Answer:
sorry if I get this wrong I think it is C
Explanation:
Answer:
0.1066 hours
Explanation:
A common pesticide degrades in a first-order process with a rate constant (k) of 6.5 1/hours. We can calculate its half-life (t1/2), that is, the times that it takes for its concentration to be halved, using the following expression.
t1/2 = ln2/k
t1/2 = ln2/6.5 h⁻¹
t1/2 = 0.1066 h
The half-life of the pesticide is 0.1066 hours.
The half-life of the breakdown reaction is 0.1066 h
The half-life of a substance is simply defined as the time taken for half of the original substance to decay.
The half-life of a first order reaction can be obtained by the following equation:
is the half-life
K is the decay constant
With the above formula, we can obtain the half-life of the breakdown reaction as follow:
Rate constant (K) = 6.5 h¯¹
Therefore, the half-life of the breakdown reaction is 0.1066 h
Learn more: brainly.com/question/24286055?referrer=searchResults