Answer:
Saturated solution
We should raise the temperature to increase the amount of glucose in the solution without adding more glucose.
Explanation:
Step 1: Calculate the mass of water
The density of water at 30°C is 0.996 g/mL. We use this data to calculate the mass corresponding to 400 mL.
Step 2: Calculate the mass of glucose per 100 g of water
550 g of glucose were added to 398 g of water. Let's calculate the mass of glucose per 100 g of water.
Step 3: Classify the solution
The solubility represents the maximum amount of solute that can be dissolved per 100 g of water. Since the solubility of glucose is 125 g Glucose/100 g of water and we attempt to dissolve 138 g of Glucose/100 g of water, some of the Glucose will not be dissolved. The solution will have the maximum amount of solute possible so it would be saturated. We could increase the amount of glucose in the solution by raising the temperature to increase the solubility of glucose in water.
The solution made by adding 550 g of glucose to 400 mL of water at 30°C is saturated. If you want to increase the amount of glucose in the solution without adding more glucose, you can increase the temperature.
The solution made by adding 550 g of glucose to 400 mL of water at 30°C is saturated.
Since the solubility of glucose at 30°C is 125 g/100 g water, adding 550 g of glucose to 400 mL of water exceeds the maximum amount of glucose that can dissolve in the given amount of water.
To increase the amount of glucose in the solution without adding more glucose, you can increase the temperature. Higher temperatures generally increase the solubility of solutes in water. By increasing the temperature, you can dissolve more glucose in the solution.
Learn more about solubility here:
#SPJ3
Answer:
0.113 M
Explanation:
Since B and D are on opposite sides of the reaction, the concentration of D increases when the concentration of B decreases. The amount by which D increases is determined by the coefficients of B and D in the balanced chemical equation:
[D]=(0.045 M)=0.113 M.
water, air, oil
B
air, water, oil
C
oil, water, air
D
none of the above
The number of water molecules in a 1.50 mol block of ice is calculated by multiplying the number of moles of water by Avogadro's number. The result is approximately 9.033 x 10^23 water molecules.
In chemistry, the amount of substance in moles is related to the number of particles (atoms, molecules) through Avogadro's number. Avogadro's number, which is 6.022 x 1023 particles/mol, tells us the number of molecules in one mole of a substance.
To calculate the number of water molecules in 1.50 mol of water, you would multiply the number of moles of water by Avogadro's number:
1.50 mol of water x 6.022 x 1023 water molecules/mol of water = 9.033 x 1023 water molecules
Therefore, there are approximately 9.033 x 1023 water molecules in a 1.50 mol block of ice.
#SPJ3
Answer:
In a climatological sense, dryness is a function of both annual rainfall and evaporation
Answer :
(i) The value of equilibrium constants for this reaction is, 10
(ii) The value of equilibrium constants for this reaction is, 0.1
Explanation :
The given equilibrium reaction is,
Now we have to determine the equilibrium constants for the following equilibrium reactions.
(i)
From the given reaction we conclude that, the reaction (i) will takes place when the given main reaction will be multiplied by half (1/2). That means when reaction will be half then the equilibrium constant will be:
The value of equilibrium constants for this reaction is, 10
(ii)
From the given reaction we conclude that, the reaction (ii) will takes place when the reaction (i) will be reverse. That means when reaction will be reverse then the equilibrium constant will be:
The value of equilibrium constants for this reaction is, 0.1