Explanation:
The macrocyclic effect in coordination chemistry refers to the enhanced stability of metal complexes that have a macrocyclic ligand. A macrocyclic ligand is a ligand that forms a ring around the metal ion, forming a macrocyclic complex. This structure increases the enthalpy of the complex, making it more thermodynamically stable. In other words, the macrocyclic effect increases the stability of a metal complex by making the ligand more difficult to remove. This effect is especially important in biological systems, where macrocyclic ligands play a key role in many enzymatic reactions.
Answer:
(0,653±0,002) M of HNO₃
Explanation:
The reaction of standarization of HNO₃ with Na₂CO₃ is:
2 HNO₃ + Na₂CO₃ ⇒ 2 Na⁺ + H₂O + CO₂ + 2NO₃⁻
To obtain molarity of HNO₃ we need to know both moles and volume of this acid. The volume is (27,71±0,05) mL and to calculate the moles it is necessary to obtain the Na₂CO₃ moles and then convert these to HNO₃ moles, thus:
0,9585 g of Na₂CO₃ × ( 1 mole / 105,988 g) =
9,043×10⁻³ mol Na₂CO₃ × ( 2 moles of HNO₃ / 1 mole of Na₂CO₃) = 1,809×10⁻² moles of HNO₃
Molarity is moles divide liters, thus, molarity of HNO₃ is:
1,809×10⁻² moles / 0,02771 L = 0,6527 M of HNO₃
The absolute uncertainty of multiplication is the sum of relative uncertainty, thus:
ΔM = 0,6527M× (0,0007/0,9585 + 0,001/105,988 + 0,05/27,71) =
0,6527 M× 2,54×10⁻³ = 1,7×10⁻³ M
Thus, molarity of HNO₃ solution and its absolute uncertainty is:
(0,653±0,002) M of HNO₃
I hope it helps!
Answer:
Explanation:
Hello,
In this case, for the calculation of the standard entropy of liquid lead at 500 °C (773.15 K), starting by solid lead 298.15 K we need to consider three processes:
1. Heating of solid lead at 298.15 K to 600.55 K (melting point).
2. Melting of solid lead to liquid lead.
3. Heating of liquid lead at 600.55 K (melting point) to 773.15 K.
Which can be written in terms of entropy by:
Whereas each entropy is computed as follows:
Therefore, the standard entropy of liquid lead at 500 °C turns out:
Best regards.
The density of the cylinder would be 3.652 gram/ cm³
.
It can be defined as the mass of any object or body per unit volume of the particular object or body. Generally, it is expressed as in gram per cm³ or kilogram per meter³.
As given in the problem, you just measured a metal cylinder and obtained the following information: mass - 3.543 grams, diameter 0.53 cm, height = 4.40 cm , and we have to calculate the density of the cylinder,
mass of the cylinder = 3.543 grams
the volume of the cylinder = πr²h
= 3.14 ×.265²×4.4
=0.97 cm³
By using the above formula for density
ρ = mass of the cylinder/volume of the cylinder
= 3.543 grams/0.97 cm³
=3.652 grams/ cm³
Thus,the density of the cylinder would be 3.652 grams/ cm³.
To learn more about density from here, refer to the link;
#SPJ2
Answer:
V cylinder =
note that
density =
Explanation:
Colloidal solutions, or colloidal suspensions, are nothing but a mixture in which the substances are regularly suspended in a fluid. ... Colloidal systems can occur in any of the three key states of matter gas, liquid or solid. However, a colloidal solution usually refers to a liquid concoction.
Answer:
Colloidal solutions, or colloidal suspensions, are nothing but a mixture in which the substances are regularly suspended in a fluid.
Answer: Option (d) is the correct answer.
Explanation:
According to Le Chaltelier's principle, when there occurs any change in an equilibrium reaction then the equilibrium will shift in a direction that will oppose the change.
This means that when pressure is applied on reactant side with more number of moles then the equilibrium will shift on product side that has less number of moles.
For example,
Since here, there are same number of moles on both reactant and product side. So, when volume is decreased at a constant temperature in this system then there will occur no change in the equilibrium state.
Thus, we can conclude that in the given when volume of the system is decreased at constant temperature, then no shift will occur.
Answer:
The concentration is 0.036 mg/mL
Explanation:
Concentration = 0.2 mM = 0.2/1000 = 2×10^-4 M = 2×10^-4 mol/L × 180,000 mg/1 mol × 1 L/1000 mL = 0.036 mg/mL