How many moles of sulfur atoms are there in 5.0 g of sulfur?

Answers

Answer 1
Answer:

Answer:

Number of moles = 0.153 mol

Explanation:

Given data:

Mass of sulfur = 5 g

Number of moles of sulfur atom = ?

Solution:

Formula:

Number of moles = mass/molar mass

Molar mass of sulfur is 32. 065g/mol.

By putting values,

Number of moles = 5 g/ 32.06 g/mol

Number of moles = 0.153 mol


Related Questions

The image formed by a lens may be real or virtual. The image formed by a lens is always virtual.
Which si unit would be most appropriate for describing the lengeth of the shoe?
3.7500*10^4+9.7100*5
A sample of gas occupies a volume of 67.5 mL . As it expands, it does 131.0 J of work on its surroundings at a constant pressure of 783 Torr . What is the final volume of the gas g
The covalent compounds are soluble in:a) All acidsb) All basesc) all solventsd) nonpolar solvents​

Describe the classification of the R group OF AMINO ACID GIVE THE THE EXAMPLES OF EACH CLASS

Answers

nonpolar amino acids: glycine, alanine, valine, leucine, isoleucine
polar amino acids: serine, threonine, cysteine, asparagine, glutamine
positively charged (basic) amino acids: lysine, arginine, histidine
negatively charged (acidic) amino acids: aspartic acid, glutamic acid

Calculate the energies of one photon of ultraviolet (λ = 1 x 10⁻⁸ m), visible (λ = 5 x 10⁻⁷ m), and infrared (λ = 1 x 10⁴ m) light. What do the answers indicate about the relationship between the wavelength and energy of light?

Answers

Answer:

  • Energy of ultraviolet light is 19.878 10⁻¹⁸ J
  • Energy of visible light is 3.9756 X 10⁻¹⁹ J
  • Energy of infrared light is 19.878 X 10⁻³⁰ J

The answers indicate that wavelength is inversely proportional to the energy of light (photon)

Explanation:

Energy of photon E = hc/λ

where;

h is Planck's constant = 6.626 X 10⁻³⁴js

c is the speed of light (photon) = 3 X 10⁸ m/s

λ is the wavelength of the photon

For ultraviolet ray, with wavelength λ = 1 x 10⁻⁸ m

E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (1 x 10⁻⁸)

E = 19.878 10⁻¹⁸ J

For Visible light, with wavelength λ = 5 x 10⁻⁷ m

E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (5 x 10⁻⁷)

E = 3.9756 X 10⁻¹⁹ J

For Infrared, with wavelength λ = 1 x 10⁴ m

E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (1 x 10⁴)

E = 19.878 X 10⁻³⁰ J

From the result above, ultraviolet ray has the shortest wavelength, but it has the highest energy among other lights.

Also infrared has the highest wavelength but the least energy among other lights.

Hence, wavelength is inversely proportional to the energy of light (photon).

In Natural selection, individuals whose unique characteristics are well-suited for an environment tend to survive and produce more offspring. true or false?

Answers

Answer: True

Explanation:

Draw the Lewis structure for BrCl3. What are the approximate bond angles about the central atom?a. 60°.
b. 90°.
c. 109°.
d. 120°.
e. 180°.

Answers

Answer:

Explanation:

BrCl₃ is an interhalogen compound with a hybridization of sp³d. The approximate bond angles can be predicted from the structure (attached below). Although, the lewis structure might be predicted to be trigonal bipyramidal from the structure, it is however a T-shaped geometry because of it's two lone pairs.

Also, from the structure attached, it can be predicted that the approximate bond angles about the central atom is 120° (360 ÷ 3) since each of the three chlorine atoms is equally spaced about the central atom.

The Lewis structure for BrCl₃ is attached to the image below. The bond angles around the central atom, bromine (Br), are 90 degrees between the bromine and each chlorine atom. Therefore, option B is correct.

A Lewis structure, also known as an electron-dot structure or Lewis dot structure is a diagram that represents the valence electrons of an atom or molecule.

Bromine (Br) is in Group 7A and has 7 valence electrons, while each chlorine (Cl) atom in Group 7A also has 7 valence electrons.

Br: 1 atom × 7 valence electrons = 7 valence electrons

Cl: 3 atoms × 7 valence electrons = 21 valence electrons

Total valence electrons = 7 + 21 = 28

To learn more about the bond angle, follow the link:

brainly.com/question/31324226

#SPJ6

The elements fluorine chlorine and Iodine are all part of the same ___on the periodic table

Answers

They are in the same group on the periodic table.

they're on the same group

Aqueous solutions of sodium hypoch lorite (NaOCI), best known as bleach, are prepared by the reaction of sodium hydroxide with chlorine: 2 NaOH (aq)Cl2(g)->NaOCI (aq)+ H20 (I)+ NaCl (aq) How many grams of NaOH are needed to react with 25.0 g of chlorine?

Answers

Answer:

28.2 g of NaOH

Explanation:

We need to calculate the grams of NaOH needed to react with 25.0 g of Cl₂ in the following reaction:

2 NaOH(aq) + Cl₂(g) → NaOCI(aq + H₂0(I) + NaCl(aq)

We are going to solve this by making use of the molar ratio between Cl₂ and NaOH given by the reaction equation where we see that every mol of Cl₂ will react with 2 moles of NaOH.

So first we need to convert the 25.0 g of Cl₂ to moles:

  • Molar Mass of Cl₂ = 2 x 35.45 = 70.90 g/mol
  • Moles of Cl₂ = 25.0 g / 70.90 g/mol = 0.3526 moles

Then we need to calculate the moles of NaOH needed to react with these moles of Cl₂ knowing that every mol of Cl₂ will react with 2 moles of NaOH:

  • moles of NaOH = 2 x moles of Cl₂ = 2 x 0.3526 moles = 0.7052 moles

Next we must convert these moles to grams:

  • Molar Mass of NaOH = 22.990 + 15.999 + 1.008 = 40.00 g/mol
  • Mass of NaOH = 0.7052 moles x 40.00 g/mol = 28.2 g

28.2 g are needed to react with 25.0 g of Cl₂ in the production of NaOCl