An object has an average acceleration of +6.07 m/s2 for 0.250 s . At the end of this time the object's velocity is +9.64 m/s .What was the object's initial velocity?

Answers

Answer 1
Answer:

Answer:

Explanation:

From the question we are given;

Acceleration a = 6.07m/s²

Time t= 0.25s

Final velocity v = 9.64m/s

Required

Initial velocity u

Using the equation of motion

v = u+at

9.64 = u+(6.07)(0.25)

9.64 = u+1.5175

u = 9.64-1.5175

u = 8.1225m/s

Hence the object's initial velocity is 8.1225m/s


Related Questions

A small segment of wire contains 10 nC of charge. The segment is shrunk to one-third of its original length. A proton is very far from the wire. What is the ratio Ff/Fi of the electric force on the proton after the segment is shrunk to the force before the segment was shrunk?
A particle (q = 5.0 nC, m = 3.0 μg) moves in a region where the magnetic field has components Bx = 2.0 mT, By = 3.0 mT, and Bz = −4.0 mT. At an instant when the speed of the particle is 5.0 km/s and the direction of its velocity is 120° relative to the magnetic field, what is the magnitude of the acceleration of the particle in m/s2?
How much work would it take to push two protons very slowly from a separation of 2.00×10−10 m (a typical atomic distance) to 3.00×10−15 m (a typical nuclear distance)?
An implanted pacemaker supplies the heart with 72 pulses per minute, each pulse providing 6.0 V for 0.65 ms. The resistance of the heart muscle between the pacemaker’s electrodes is 550 Ω. Find (a) the current that flows during a pulse, (b) the energy delivered in one pulse, and (c) the average power supplied by the pacemaker.
Temperature°F = (9/5 * °C) + 32°°C = 5/9 * (°F - 32°) 1 pt each. Using the table above as a guide, complete the following conversions. Be sure to show your work to the side:1. 5 cm = ________ mm2. 83 cm = ________ m3. 459 L = _______ ml4. .378 Kg = ______ g5. 45°F = ________ °C6. 80°C = _________ °F

A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass per unit length of 1 = 0.0128(kg/m). It’s displacement function is D(x,t) = Acos(kx - t). It’s amplitude is 0.001m and its wavelength is 0.8m. It reaches the end of this string, and continues on to a string with 2 = 0.0512(kg/m) and the same tension as the first string. Give the values of A, k, and , for the original wave, as well as k and  the reflected wave and the transmitted wave.

Answers

Answer:

Explanation:

A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass per unit length of 1 = 0.0128(kg/m). It’s displacement function is D(x,t) = Acos(kx - t). It’s amplitude is 0.001m and its wavelength is 0.8m. It reaches the end of this string, and continues on to a string with 2 = 0.0512(kg/m) and the same tension as the first string. Give the values of A, k, and , for the original wave, as well as k and  the reflected JJJJJJave and the transmitted wave.

A 580-mm long tungsten wire, with a 0.046-mm-diameter circular cross section, is wrapped around in the shape of a coil and used as a filament in an incandescent light bulb. When the light bulb is connected to a battery, a current of 0.526 A is measured through the filament. (Note: tungsten has a resistivity of 4.9 × 10-8 Ω • m.). How many electrons pass through this filament in 5 seconds?

Answers

Answer: 1.64 *10^19 electrons

Explanation: In order to the explain this problem we have to consider the following:

The current= charge/time; so

as the electrons move in the tungsten wire we have:

0.526 C/s= N electrons per second* charge of electron=

N electrons/s= 0.526/1.6*10^-19= 3.28 *10^18 electrons/s

Then, during  5 seconds  will pass:

3.28 *10^18 electrons/s*5 5s= 1.64 *10^19 electrons

Answer:

1.64 x 10^19 electrons

Explanation:

The current is defined as I=ΔQ/Δt where ∆Q is the amount of charge flowing past a point in the filament. This charge is comprised of electrons that each carry charge of e = 1.602 × 10^-19 C. So ΔQ=Ne=IΔt and the number of electrons flowing through the filament in 5 s is N=IΔte=(0.526 A)(5 s)1.602×10^−19 C=1.64×10^19 electrons.

In a collision between two objects having unequal masses, how does magnitude of the impulse imparted to the lighter object by the heavier one compare with the magnitude of the impulse imparted to the heavier object by the lighter one?a. the lighter object receives a larger impulse

b. the heavier object receives a larger impulse

c. both objects receive the same impulse

d. the answer depends on the ratio of the masses

e. the answer depends on the ratio of the speeds

Answers

Answer:

Explanation:

The impulse has as an expression

      I = ∫ F dt

In addition, on impulse of isolated systems is

       I =ΔP = m vf - m v₀

Let's replace

      F dt = m (vf -vo)

The force in these shocks laqueunxcyerpoesjerce on the other, using the law of action and reaction state forces has the same magnitude and the time of the shock is equal for the two bodies, this implies that the impulse is equal for the two bodies

Let's check the answers

a) False as the forces are of action and reaction the impulse must be equal

b) False

c) True. Why do we have an action and reaction stop

d False

e) false

Final answer:

In collision between two objects, despite difference in their masses, both objects receive the same impulse, as per Newton's third law.

Explanation:

In a collision between two objects with unequal masses, according to Newton's third law of motion, 'For every action, there is an equal and opposite reaction', the magnitude of the impulse imparted to the lighter object by the heavy object is exactly the same as the magnitude of the impulse imparted to the heavier object by the lighter one.

This is regardless of the masses or speeds of the objects involved. The direction of these impulses will be opposite, but their magnitudes will be the equal. So, option c. 'both objects receive the same impulse' is correct.

Learn more about Impulse during Collision here:

brainly.com/question/31678431

#SPJ6

a force of 35N is exerted over a cylinder with an area of 5m^2. What pressure,in pascals, will be transmitted in the hydraulic system?

Answers

Answer:

The answer is 7 Pa

Explanation:

The pressure transmitted in the hydraulic system can be found by using the formula

p =  (f)/(a)  \n

f is the force

a is the area

From the question we have

p =  (35)/(5)  \n

We have the final answer as

7 Pa

Hope this helps you

What is the kinetic energy k of an electron with momentum 1.05×10−24 kilogram meters per second?

Answers

Momentum = mv
where m is the mass of an electron and v is the velocity of the electron.

v = momentum ÷ m
   = (1.05×10∧-24)÷(9.1×10∧-31) = 1,153,846.154 m/s

kinetic energy = (mv∧2)÷2
                       = (9.1×10∧-31 × 1,153,846.154∧2) ÷2
                      = (1.21154×10∧-18) ÷ 2
                      = 6.05769×10∧-19 J

Answer:

K = 6.02 × 10⁻¹⁹ J

Explanation:

The momentum (p) of an electron is its mass (m) times its speed (v).

p = m × v

v = p / m = (1.05 × 10⁻²⁴ kg.m/s) / 9.11 × 10⁻³¹ kg = 1.15 × 10⁶ m/s

We can find the kinetic energy (K) using the following expression.

K = 1/2 × m × v²

K = 1/2 × 9.11 × 10⁻³¹ kg × (1.15 × 10⁶ m/s)²

K = 6.02 × 10⁻¹⁹ J

How does the force of gravity change as the mass of one object doubles?

Answers

The force of gravity changes as the mass of one object doubles. As the mass of one object is doubled then the force between the objects also gets doubled.

What is Force?

Force is an influence which can change the motion of an object through the application of an external force. A force can cause an object with the mass to change its velocity, that is the object undergo acceleration.

Force is directly proportional to the mass of the object and the acceleration of the object. If we double the mass of one of the objects, then we double the strength of the force. If we double the masses of both the objects, then we quadruple the strength of force.

Learn more about Force here:

brainly.com/question/13191643

#SPJ2

If the mass of one of the objects is doubled, then the force of gravity between them is doubled. ... Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces.