Answer:
Velocity =0.241 m/s
Acceleration = 7.21e-4 m/s²
Explanation:
The wheel travels through
Θ = (7.40/37.3)*360º = 71.42º
and so the length of the line segment connecting the initial and final position is
L = 2*L*sin(Θ/2) = 2 * (183m/2) * sin(71.42º/2) = 107 m
so the average velocity is
v = L / t = 107m / 7.40*60s = 0.241 m/s
Initially, let's say the velocity is along the +x axis:
Vi = π * 183m / (37.3*60s) i = 0.257 m/s i
Later, it's rotated through 71.42º, so
Vf = 0.257m/s * (cos71.42º i + sin71.42º j) = [0.0819 i + 0.244 j] m/s
ΔV = Vf - Vi = [(0.0819 - 0.257) i + 0.244 j] m/s = [-0.175 i + 0.244 j] m/s
which has magnitude
|ΔV| = √(0.175² + 0.244²) m/s = 0.300 m/s
Then the average acceleration is
a_avg = |ΔV| / t = 0.300m/s / (7.40*60s) = 6.76e-4 m/s²
The instantaneous acceleration is centripetal: a = ω²r
a = (2π rads / (37.3*60s)² * 183m/2 = 7.21e-4 m/s²
Answer:
Explanation:
Given that wheel completes one round in total time T = 37.3 min
so angular speed of the wheel is given as
now the angle turned by the wheel in time interval of t = 7.40 min
PART 1)
Now the average velocity is defined as the ratio of displacement and time
here displacement in given time interval is
R = radius = 91.5 m
Now time to turn the wheel is given as
now we have
PART 2)
Now average acceleration is defined as ratio of change in velocity in given time interval
here velocity of a point on its rim is given as
now change in velocity when wheel turned by the above mentioned angle is given as
time interval is given as
now average acceleration is given as
Answer:
178.75 N
Explanation:
The force necessary to start moving the crate must be equal to or more than the frictional force (resistive force) acting on the crate but moving in an opposite direction to the frictional force.
So, we find the frictional force, Fr:
Fr = -μmg
Where μ = coefficient of friction
m = mass
g = acceleration due to gravity
The frictional force is negative because it acts against the direction of motion of the crate.
Fr = -0.57 * 32 * 9.8
Fr = - 178.75 N
Hence, the force necessary to move the crate must be at least equal to but opposite in direction to this frictional force.
Therefore, this force is 178.75 N
Answer:
The distance covered by the bird before feeding is m.
Explanation:
As the bird consumes 4 g of fat before flying, the amount of initial food energy () stored by it is given by
So the mechanical energy stored by the bird () is given by
Given, the power consumed by the bird
So, the time () required to consume this power by the bird is
As the bird flies at an average speed () of , so the distance () covered by the bird before feeding again is given by
The distance of the bird'sflight before him/her feeds again is mathematically given as
d = 4.55* 10^{5} m
Question Parameter(s):
a bird that flies at an averagespeed of 10.7 m/s
its body fat reserves at an average rate of 3.70 W
the most energy per unit mass: 1.00 grams of fat provides about 9.40 (food) Calories,
Generally, the initial food energy is mathematically given as
Ex= 4 g*9.4
Ex= 37.6cal
Therefore, the mechanical energy
Em = Ex * 4186
Em = 1.57*10^{5} J
In conclusion, time of flight
t= 4.24*10 ^{4} s
Th distance hence is
d = v* t
d= 10.7 *4.25*10 ^{4}
d = 4.55* 10^{5} m
Read more about distance
Answer:
I am sure it is A because no chemical change occurs and it is a physical change. If you can Brainllest than that would be great but if you wanna you don't have to. Hope this helps!! If wrong sorry.
Explanation:
Energy decreases with decreasing wavelength and decreasing frequency.
B.
Energy increases with decreasing wavelength and increasing frequency.
C.
Energy increases with decreasing wavelength and decreasing frequency.
D.
Energy decreases with increasing wavelength and increasing frequency.
Answer:
B. Energy increases with decreasing wavelength and increasing frequency.
Explanation:
Answers:
a) 222.22 m/s
b) 800.00 km/h
Explanation:
The speed of a wave is given by the following equation:
Where:
is the speed
is the frequency, which has an inverse relation with the period
is the wavelength
Solving with the given units:
This is the speed of the wave in km/h
Transforming this speed to m/s:
This is the speed of the wave in m/s
Answer:
The magnitude of the force you must exert on the rope in order to accelerate upward is 705.6 N
Explanation:
The magnitude of force, you must exert can be estimated as follows;
Since it is upward motion, we must consider acceleration due to gravity which opposes the upward motion.
F = m(a+g)
where;
F is the magnitude of the upward force
m is your mass, which is the measure of inertia = 63kg
a is the acceleration of the rope = 1.4 m/s²
F = 63(1.4 + 9.8)
F = 63(11.2)
F = 705.6 N
Therefore, the magnitude of the force you must exert on the rope in order to accelerate upward is 705.6 N
Answer:
705.6 N
Explanation:
Force: This can be defined as the product of mass a acceleration.
The S.I unit of force is Newton.
The expression for the force on the rope in order to accelerate upward is given as,
F-W = ma .......................... Equation 1
Where F = Force exerted on the rope, W = weight of the rope, m = mass of the rope, a = acceleration.
But,
W = mg........................ Equation 2
Where g = acceleration due to gravity
substitute equation 2 into equation 1
F-mg = ma
F = ma+mg
F = m(a+g).............. Equation 3
Given: m = 63 kg, a = 1.4 m/s²
Constant: g = 9.8 m/s²
Substitute into equation 3
F = 63(1.4+9.8)
F = 63(11.2)
F = 705.6 N
The magnitude of the force exerted on the rope = 705.6 N