What is the density of the paint if the mass of a tin containing 5000 cm3 paint is 7 kg. If the mass of the empty tin, including the lid is 0.5 kg.​

Answers

Answer 1
Answer:

We are given:

Mass of the Paint bucket (with paint) = 7000 grams

Mass of the paint bucket (without paint) = 500 grams

Volume of Paint in the Bucket = 5000 cm³

Mass of Paint in the Bucket:

To get the mass of the paint in the bucket, we will subtract the mass of the bucket from the mass of the paint bucket (with paint)

Mass of Paint = Mass of Paint bucket (with paint) - Mass of the paint Bucket (without paint)

Mass of Paint = 7000 - 500

Mass of Paint = 6500 grams

Density of the Paint:

We know that density = Mass / Volume

Density of Paint  = Mass of Paint / Volume occupied by Paint

Density of Paint = 6500/5000

Density of Paint = 1.3 grams / cm³


Related Questions

If gear a rotates with a constant angular acceleration of aa = 90 rad>s2, starting from rest, determine the time required for gear d to attain an angular velocity of 600 rpm. Also, find the number of revolutions of gear d to attain this angular velocity. Gears a, b, c, and d have radii of 15 mm, 50 mm, 25 mm, and 75 mm, respectively.
An element emits light at two nearly equal wavelengths, 577 nm and 579 nm If the light is normally incident on a diffraction grating with 2000 lines/cm., what is the distance between the 3rd order fringes of the two wavelengths on a screen 1 m from the grating?
An insulated rigid tank contains 3 kg of H2O in the form of a saturated mixture of liquid and vapor at a pressure of 150 kPa and a quality of 0.25. An electric heater inside the tank is turned on to heat this H2O until the pressure increases to 200 kPa. Please determine the change in total entropy of water during this process. Hint: See if you can find the electrical work consumed during this process.
The left ventricle of a resting adult's heart pumps blood at a flow rate of 85.0 cm3/s, increasing its pressure by 110 mm Hg, its velocity from zero to 25.0 cm/s, and its height by 5.00 cm. (All numbers are averaged over the entire heartbeat.) Calculate the total power output (in W) of the left ventricle. Note that most of the power is used to increase blood pressure.
A square coil (length of side = 24 cm) of wire consisting of two turns is placed in a uniform magnetic field that makes an angle of 60° with the plane of the coil. If the magnitude of this field increases by 6.0 mT every 10 ms, what is the magnitude of the emf induced in the coil?

A 1 225.0 kg car traveling initially with a speed of 25.000 m/s in an easterly direction crashes into the back of a 9 700.0 kg truck moving in the same direction at 20.000 m/s. The velocity of the car right after the collision is 18.000 m/s to the east.(a) What is the velocity of the truck right after the collision? (Give your answer to five significant figures.) m/s east (b) What is the change in mechanical energy of the cartruck system in the collision? J (c) Account for this change in mechanical energy.

Answers

Answer:

The answers to the questions are;

(a) The velocity of the truck right after the collision is 20.884 m/s

(b) The change in mechanical energy of the car truck system in the collision is -9076.4384 J

(c) The change in mechanical energy is due to energy consumed by the collision process.

Explanation:

(a) From the principle of conservation of linear momentum, we have

m₁·v₁+m₂·v₂ = m₁·v₃ + m₂·v₄

Where:

m₁ = Mass of the car = 1225.0 kg

m₂ = Mass of the truck = 9700.0 kg

v₁ = Initial velocity of the car = 25.000 m/s

v₂ = Initial velocity of the truck = 20.000 m/s

v₃ = Final velocity of the car right after collision = 18.000 m/s

v₄ = Final velocity of the truck right after collision

Therefore

1225.0 kg × 25.000 m/s  +  9700.0 kg × 20.000 m/s = 1225.0 kg × 18.000 m/s  + 9700.0 kg × v₄

That is 30625 kg·m/s + 194000 kg·m/s = 22050 kg·m/s + 9700.0 kg × v₄

Making v₄ the subject of the formula yields

v₄ = (202575 kg·m/s)÷9700.0 kg = 20.884 m/s

The velocity of the truck right after the collision to five significant figures = 20.884 m/s

(b) The change in mechanical energy of the car truck system in the collision can be found by

The change in kinetic energy of the car truck system

Change in kinetic energy, ΔK.E. = Sum of final kinetic energy - Sum of initial kinetic energy

That is ΔK.E. = ∑ Final K.E -∑ Initial K.E.

ΔK.E. = ((1)/(2) m_1v_3^(2)+(1)/(2) m_2v_4^(2)) - ((1)/(2) m_1v_1^(2) +(1)/(2) m_2v_2^(2) )

         = ((1)/(2)·1225·18²+ (1)/(2)·9700·20.884²) - ((1)/(2)·1225·25²+(1)/(2)·9700·20²)

         = 2313736.0616 kg·m²/s² - 2322812.5 kg·m²/s² =  -9076.4384 kg·m²/s²

1 kg·m²/s² = 1 J ∴ -9076.4384 kg·m²/s² = -9076.4384 J

(c) The energy given off by way of the 9076.4384 J is energy transformed into other forms including

1) Frictional resistance between the tires and the road for the truck and car

2) Frictional resistance in the transmission system of the truck to increase its velocity

3) Sound energy, loud sound heard during the collision

4) Energy absorbed when the car and the truck outer frames are crushed

5) Heat energy in the form of raised temperatures at the collision points of the car and the truck.

6) Energy required to change the velocity of the car over a short distance.

An infant throws 7 g of applesauce at a velocity of 0.5 m/s. All of the applesauce collides with a nearby wall and sticks to it. What is the decrease in kinetic energy of the applesauce?

Answers

Answer:

Δ KE = - 8.75 x 10⁻⁴ J

Explanation:

given,

mass of applesauce = 7 g = 0.007 Kg

initial velocity, u = 0.5 m/s

final velocity, v = 0 m/s

Decrease in kinetic energy = ?

initial kinetic energy

KE_1=(1)/(2)mu^2

KE_1=(1)/(2)* 0.007 * 0.5^2

      KE₁ = 8.75 x 10⁻⁴ J

final kinetic energy

KE_2=(1)/(2)mv^2

KE_2=(1)/(2)* 0.007 * 0^2

      KE₂ =0 J

Decrease in kinetic energy

Δ KE =  KE₂ - KE₁

Δ KE = 0 - 8.75 x 10⁻⁴

Δ KE = - 8.75 x 10⁻⁴ J

decrease in kinetic energy of the applesauce is equal to  8.75 x 10⁻⁴ J

Final answer:

The decrease in kinetic energy of the applesauce, when it hits the wall and stops, is the initial kinetic energy of it. Using the formula of kinetic energy, the decrease is calculated to be 0.000875 Joules.

Explanation:

This question relates to the concept of kinetic energy in physics. Kinetic energy is calculated by the formula 0.5 * mass (kg) * velocity (m/s)^2. So the initial kinetic energy of the applesauce right after being thrown was 0.5 * 0.007 kg * (0.5 m/s)^2 = 0.000875 Joules.

When the applesauce hits the wall and stops, its velocity drops to 0. Thus, its kinetic energy also goes to 0 (because kinetic energy is proportional to the square of velocity).

Therefore, the decrease in kinetic energy is the same as the initial kinetic energy of the applesauce, which is 0.000875 Joules.

Learn more about Kinetic Energy here:

brainly.com/question/33783036

#SPJ3

Ezra (m = 20.0 kg) has a tire swing and wants to swing as high as possible. He thinks that his best option is to run as fast as he can and jump onto the tire at full speed. The tire has a mass of 10.0 kg and hangs 3.50 m straight down from a tree branch. Ezra stands back 10.0 m and accelerates to a speed of 3.62 m/s before jumping onto the tire swing. (a) How fast are Ezra and the tire moving immediately after he jumps onto the swing? m/s (b) How high does the tire travel above its initial height?

Answers

Answer:

a) v=5.6725\,m.s^(-1)

b) h= 1.6420\,m

Explanation:

Given:

  • mass of the body, M=20\,kg
  • mass of the tyre,m=10\,kg
  • length of hanging of tyre, l=3.5m
  • distance run by the body, d=10m
  • acceleration of the body, a=3.62m.s^(-2)

(a)

Using the equation of motion :

v^2=u^2+2a.d..............................(1)

where:

v=final velocity of the body

u=initial velocity of the body

here, since the body starts from rest state:

u=0m.s^(-1)

putting the values in eq. (1)

v^2=0^2+2* 3.62 * 10

v=8.5088\,m.s^(-1)

Now, the momentum of the body just before the jump onto the tyre will be:

p=M.v

p=20* 8.5088

p=170.1764\,kg.m.s^(-1)

Now using the conservation on momentum, the momentum just before climbing on the tyre will be equal to the momentum just after climbing on it.

(M+m)* v'=p

(20+10)* v'=170.1764

v'=5.6725\,m.s^(-1)

(b)

Now, from the case of a swinging pendulum we know that the kinetic energy which is maximum at the vertical position of the pendulum gets completely converted into the potential energy at the maximum height.

So,

(1)/(2) (M+m).v'^2=(M+m).g.h

(1)/(2) (20+10)* 5.6725^2=(20+10)* 9.8* h

h\approx 1.6420\,m

above the normal hanging position.

Which law of physics relates electric fields and current

Answers

Answer:

Ohms law

Explanation:

Which states that the current flowing through any cross-section of the conductor is directly proportional to the potential differenceapplied across its end, provided physical conditions like temperature and pressure remain constant.

Which formula can be used to calculate the horizontal displacement of a horizontally launched projectile?x = vi(cos )
x = vi(cos )t
x = ayt
x = vxt (RIGHT ANSWER)

Answers

The formula for calculating the horizontal displacement of a horizontally launched projectile is x=v*t

A projectile launched horizontally with a velocity v, at a height y ,travels a horizontal distance x, while falling through a distance y. The horizontal velocity of a projectile remains constant throughout its motion, in the absence of air resistance. The vertical component of the velocity is under the action of the gravitational force and hence it increases in magnitude as it falls through the height.

The horizontal displacement of the projectile is a uniform motion and it occurs at a constant speed v.

Thus, the horizontal displacement of the projectile is given by the expression.

x=v*t

А pressure gauge with a measurement range of 0-10 bar has a quoted inaccuracy of £1.0% f.s. (+1% of full-scale reading). (a) What is the maximum measurement error expected for this instrument? (b) What is the likely measurement error expressed as a percentage of the or reading if this pressure gauge is measuring a pressure of 1 bar?​

Answers

Answer:

I am not able to answer this question please don't mind...

Explanation:

please marks me as brainliests...

Final answer:

The maximum expected measurement error for a pressure gauge measuring 0-10 bar with an inaccuracy of 1% of full-scale reading is 0.1 bar. When the gauge measures 1 bar, the expected inaccuracy is 10%.

Explanation:

The inaccuracy mentioned here is related to the full-scale reading which means the error is calculated based on the top measurement value. The pressure gauge range is 0-10 bar, so the inaccuracy is one percent of this. (a) Thus, the maximum measurement error expected for this instrument is 1.0% of 10 bar i.e., 0.1 bar. (b) If the gauge is measuring a pressure of 1 bar, then the relative error expressed as a percentage would be the absolute error (0.1 bar) divided by the observed reading (1 bar) i.e., 10%. It means, when measuring 1 bar pressure, the expected measurement error is 10%. This is an example of how instrument inaccuracy is properly interpreted and employed when working with various measurements.

Learn more about Instrument Inaccuracy here:

brainly.com/question/32107600

#SPJ3