Answer:
P4010 + 6H20 → 4H3PO4
Explanation:
i rlly h8 this lesson but idt chem anymore but i used to do these alot for the last past 2 yrs
p-4 p-1
o-11 o-4
h-2 h-3
(these r for me so dont rlly mind it)
hope it helped tho:)))
Answer:
In a chemical reaction, reactants contact each other, bonds between atoms in the reactants are broken, and atoms rearrange and form new bonds to make the products.
Explanation:
Answer:
1.133 kPa is the average pressure exerted by the molecules on the walls of the container.
Explanation:
Side of the cubic box = s = 20.0 cm
Volume of the box ,V=
Root mean square speed of the of helium molecule : 200m/s
The formula used for root mean square speed is:
where,
= root mean square speed
k = Boltzmann’s constant =
T = temperature = 370 K
M = mass helium =
= Avogadro’s number =
Moles of helium gas = n
Number of helium molecules = N =
N =
Ideal gas equation:
PV = nRT
Substitution of values of T and n from above :
(1 Pa = 0.001 kPa)
1.133 kPa is the average pressure exerted by the molecules on the walls of the container.
The question asks for the average pressure exerted by helium gas molecules on the walls of a cubic container. Using the equation PV = Nmv^2, we can calculate pressure by substituting the given values for volume, number of molecules, mass of one molecule, and root-mean-square speed.
The question is asking to calculate the average pressure exerted by helium gas molecules on the walls of a cubic container. The important formula relating pressure (P), volume (V), number of molecules (N), mass of a molecule (m), and the square of the rms speed (v2) of the molecules in a gas is:
PV = Nmv2,
First, we need to determine the volume of the container, which is the cube of one side, so V = (20 cm)3 = (0.2 m)3. Inserting the given values into the equation and solving for P gives us the desired answer. Recall that the rms speed is given, so no temperature calculations are needed.
Therefore, using all given data points:
Volume (V) = (0.2 m)3
Number of molecules (N) = 2.00 × 1023
Mass of one helium molecule (m) = 3.40 × 10-27 kg
Root-mean-square speed (vrms) = 200 m/s
By substituting these values, we can find the pressure exerted by the gas. This represents an application of kinetic theory of gases which assumes the behavior of an ideal gas.
general appearance as real-ufe
objects.
True or false
Answer:
true
Explanation:
Answer:
True
Explanation:
Because its true
Answer:
0.41 M
Explanation:
A -> B
rate constant (k) = 0.039L/mol s
t = 23
Final concentration, [A] = 0.30M
Initial concentration, [A]o = x
1 / [A] = kt + 1 / [A]o
1 / [A]o = 1 / [A] - kt
1 / [A]o = 1 / 0.30 - 0.039 (23)
1 / [A] = 3.33 - 0.897 = 2.433
[A] = 0.41 M
b. 26.0 g H2SO4 in 200.0 mL solution
c. 15.0 g NaCl dissolved to make 420.0 mL solution
Answer:
a) NaHCO3 = 0.504 M
b) H2SO4 = 1.325 M
c) NaCl = 0.610 M
Explanation:
Step 1: Data given
Moles = mass / molar mass
Molarity = moles / volume
a. 19.5 g NaHCO3 in 460.0 ml solution
Step 1: Data given
Mass NaHCO3 = 19.5 grams
Volume = 460.0 mL = 0.460 L
Molar mass NaHCO3 = 84.0 g/mol
Step 2: Calculate moles NaHCO3
Moles NaHCO3 = 19.5 grams / 84.0 g/mol
Moles NaHCO3 = 0.232 moles
Step 3: Calculate molarity
Molarity = 0.232 moles / 0.460 L
Molarity = 0.504 M
b. 26.0 g H2SO4 in 200.0 mL solution
Step 1: Data given
Mass H2SO4 = 26.0 grams
Volume = 200.0 mL = 0.200 L
Molar mass H2SO4 = 98.08 g/mol
Step 2: Calculate moles H2SO4
Moles H2SO4 = 26.0 grams / 98.08 g/mol
Moles H2SO4 = 0.265 moles
Step 3: Calculate molarity
Molarity = 0.265 moles / 0.200 L
Molarity =1.325 M
c. 15.0 g NaCl dissolved to make 420.0 mL solution
Step 1: Data given
Mass NaCl = 15.0 grams
Volume = 420.0 mL = 0.420 L
Molar mass NaCl = 58.44 g/mol
Step 2: Calculate moles NaCl
Moles NaCl = 15.0 grams / 58.44 g/mol
Moles NaCl = 0.256 moles
Step 3: Calculate molarity
Molarity = 0.256 moles / 0.420 L
Molarity =0.610 M