15. List the substances A-E in order from most dense to least dense based on the facts provided.Please write the letters in the spaces provided below.
Substance A: 8.2 g/cm3

Substance B: 3.5 cm and 30.0g

Substance C: 10.0g and 40mL

Substance D: 0.5 g/cm3

Substance E: 2.0cm by 3.0cm by 1.0cm and 4.0g

Most Dense_ _ _ _ _
Least Dense

Answers

Answer 1
Answer:

The order of density of substances ranging from most dense to least dense is :substance B>substance A>substance E>substance C>substance D.

What is density?

It is a ratio of substance's mass per unit of volume.Symbol most commonly used for density is р.The SI unit of densityis kilogram per cubic meter .It explains how tightly a material is packed together.

There are2 types of density :1)absolute density 2) relativedensity.Absolute density is the massof any  substance per unit volume and relative density is the ratio of density of a substance to the density of a given reference material.

Reference material used forrelative density is water.The instrument used for measuring density or relative density of liquids is hydrometer. Densityis measured at constant temperature and pressure.

To learn more about density and it's types click here:

brainly.com/question/15164682

#SPJ2

Answer 2
Answer:

Answer:

So 1st it is B then D then E then a then C


Related Questions

What type of compound is disulfur dichloride?a. organic compoundb. acid (ionic compound)c. covalent compoundd. ionic compound
15.2 grams of CO2 = ? molecules of CO2
1. On the basis of your results, what is the relationship between the temperature of the solvent and the rate of solution formation?
Which element is oxidized in the following reaction Mn²⁺ + 2 K → Mn(s) + 2 K⁺ ?
Find the initial velocity for an enzymatic reaction when Vmax = 6.5 x 10–5 mol•sec–1 , [S] = 3.0 x 10–3 M, and KM = 4.5 x 10–3 M. A) not enough information is given to make this calculation B) 2.6 x 10–5 mol•sec–1 C) 1.4 x 10–2 mol•sec–1 D) 8.7 x 10–3 mol•sec–1 E) 3.9 x 10–5 mol•sec–1

Be sure to answer all parts. Styrene is produced by catalytic dehydrogenation of ethylbenzene at high temperature in the presence of superheated steam. (a) Given these data, find ΔH o rxn , ΔG o rxn , and ΔS o rxn at 298 K: ΔH o f (kJ/mol) ΔG o f (kJ/mol) S o (J/mol·K) Ethylbenzene, C6H5−CH2CH3 −12.5 119.7 255 Styrene, C6H5−CH=CH2 103.8 202.5 238 ΔH o rxn ΔG o rxn ΔS o rxn kJ kJ J/K (b) At what temperature is the reaction spontaneous? °C (c) What are ΔG o rxn and K at 600.°C? ΔG o rxn K kJ/mol × 10 Enter your answer in scientific notation.

Answers

Answer:

a) ΔHºrxn = 116.3 kJ, ΔGºrxn = 82.8 kJ,  ΔSºrxn =  0.113 kJ/K

b) At 753.55 ºC or higher

c )ΔG =  1.8 x 10⁴ J

    K = 8.2 x 10⁻²

Explanation:

a)                                 C6H5−CH2CH3  ⇒  C6H5−CH=CH2  + H₂

ΔHf kJ/mol                    -12.5                           103.8                      0

ΔGºf kJ/K                        119.7                         202.5                      0

Sº J/mol                          255                          238                      130.6*

Note: This value was not given in our question, but is necessary and can be found in standard handbooks.

Using Hess law to calculate  ΔHºrxn we have

ΔHºrxn  = ΔHfº C6H5−CH=CH2 +  ΔHfº H₂ - ΔHºfC6H5−CH2CH3

ΔHºrxn =     103.8 kJ + 0 kJ  - (-12.5 kJ)

ΔHºrxn = 116.3 kJ

Similarly,

ΔGrxn = ΔGºf C6H5−CH=CH2 +  ΔGºfH₂ - ΔGºfC6H5CH2CH3

ΔGºrxn=   202.5 kJ + 0 kJ - 119.7 kJ  = 82.8 kJ

ΔSºrxn = 238 J/mol + 130.6 J/mol -255 J/K = 113.6 J/K = 0.113 kJ/K

b) The temperature at which the reaction is spontaneous or feasible occurs when ΔG becomes negative and using

ΔGrxn =  ΔHrxn -TΔS

we see that will happen when the term  TΔS  becomes greater than ΔHrxn since ΔS  is positive  , and so to sollve for T we will make ΔGrxn equal to zero and solve for T. Notice here we will make the assumption that  ΔºHrxn and ΔSºrxn remain constant at the higher temperature  and will equal the values previously calculated for them. Although this assumption is not entirely correct, it can be used.

0 = 116 kJ -T (0.113 kJ/K)

T = 1026.5 K  =  (1026.55 - 273 ) ºC = 753.55 ºC

c) Again we will use

                       ΔGrxn =  ΔHrxn -TΔS

to calculate ΔGrxn   with the assumption that ΔHº and ΔSºremain constant.

ΔG =  116.3 kJ - (600+273 K) x 0.113 kJ/K =  116.3 kJ - 873 K x 0.113 kJ/K

ΔG =  116.3 kJ - 98.6 kJ =  17.65 kJ = 1.8 x 10⁴ J ( Note the kJ are converted to J to necessary for the next part of the problem )

Now for solving for K, the equation to use is

ΔG = -RTlnK and solve for K

- ΔG / RT = lnK  ∴ K = exp (- ΔG / RT)

K = exp ( - 1.8 x 10⁴ J /( 8.314 J/K  x 873 K)) = 8.2 x 10⁻²

Final answer:

The change in enthalpy, entropy, and free energy were calculated for the dehydrogenation reaction of ethylbenzene into styrene. The reaction was found to be endothermic and results in a decrease in overall disorder. Under the given conditions, the reaction will never be spontaneous.

Explanation:

The processes involved in the production of styrene from ethylbenzene are fairly complex and require knowledge of thermodynamics. We'll begin with ΔH°rxn, which is found by subtracting the enthalpy (ΔH) of the reactants from that of the products: ΔH°rxn = [ΔH°f(styrene)] - [ΔH°f(ethylbenzene)] = 103.8 kJ/mol - (-12.5 kJ/mol) = 116.3 kJ/mol. This means the reaction is endothermic, as heat is absorbed.

The change in entropy ΔS°rxn, obtained likewise, is [S°(styrene) - S°(ethylbenzene)] = (238 J/mol·K - 255 J/mol·K) = -17 J/mol·K. This indicates a decrease in disorder in the system.

With these, we can calculate the change in free energy ΔG°rxn at a given temperature (T) using the equation ΔG°rxn = ΔH°rxn - TΔS°rxn. Substituting the known values at 298 K, ΔG°rxn = 116.3 kJ/mol - (298 K)(-17 J/mol·K) = 121.2 kJ/mol, indicating a non-spontaneous reaction.

For the reaction to be spontaneous, ΔG°rxn must be less than zero. Solving for T in the above equation with ΔG°rxn = 0, yields T = ΔH°rxn / ΔS°rxn = 116.3 kJ/mol / -17 J/mol·K ≈ -6840 K. This value is negative, implying the reaction is never spontaneous under the given conditions.

Learn more about Thermodynamics of Styrene Production here:

brainly.com/question/32495049

#SPJ12

An element x is found to have a mass number of 31 and atomic number of 17. idenrify the group and the period to which it belongs?

Answers

Answer:

Well atomic number 17 is Chlorine, which is most commonly found as a gas, and is period 7.

Explanation:

elements found on period 7 are some of the most unstable elements.

Wich substances is most likely to form in a precipitation reaction?

Answers

Answer:

A precipitation reaction refers to the formation of an insoluble salt when two solutions containing soluble salts are combined. The insoluble salt that falls out of solution is known as the precipitate, hence the reaction's name.

Explanation:

Which of the following is an example of a compound? water - H2Ooxygen-O2
hydrogen - H2
helium - He

Answers

Answer:

water

Explanation:

the other options are elements while water is 2 elements

Does the density of a liquid depend on its volume? Write your answer as a CER.

Answers

Answer: Yes

Explanation:

Density of a liquid depend on its volume. This is because Density is mass of liquid divided by volume.

Density is inversely proportional to volume.

As density increases, volume decreases and vice versa. The density for water is 1g/ milliliter but it changes with changes in temperature or there are impurities dissolved in it. Ice is less dense that liquid water and it's the major reason it's float because it's volume is inversely proportional to it's density.

Why is predicting our future oil supply controversial and involves some uncertainty?I just need some explaining.

Answers

Natural resources such as oil that are as yet undiscovered are very difficult to predict or estimate; this creates huge uncertainty and large errors in even the most rigorous scientific efforts to predict future supply. Changes in oil drilling and discovery technology can and will completely change the eventual results in the search for undiscovered resources. The controversy lies in the desire to eliminate oil from the world's energy mix in order to prevent a perceived but uncertain risk of global warming and the desire to encourage the use of alternative energy in order to reduce that risk, even though so far no alternative energy source other than natural gas, coal, and nuclear energy has been able to compete with oil economically.
The Problem with predicting things like our natural supply of oil can be picked out to a LOT of different variables. For starters, we find a lot of oil in a myriad of different places. The frequency in which we find this oil could theoretically be linked to a computer and predicted like Stocks. But then again, since the rate changes almost as much as the finding sites, You can easily be slapped aside by prehistoric biology and geology. The other problem with predicting our supply is often controversial; "How much do we use" well, you have to look at individual countries or the entire planet. And that alone is  a lot of work. Imagine knocking on your neighbor's door and asking exactly how much hot water he uses.... Every day.... For a year!  Pretty creepy right? Not to mention intrusive. But the internet has some of these things, So lets say you managed to find the frequency of oil findings globally, and the rate of use for these areas. Well now you have even more problems. Because there are many different people looking for oil. And when they find it. They sell it. Or they sue eachother over who found it first. Because underground supplies are huge at times. Often companies will be drilling the same one. To get an exact count from one company you would need to track all of the oil possessed by them and the buyers, which is paperwork. Which is Highly variable depending on who you are counting from. Without Tainting your next variable. "Current processed supply." ie. The stuff already out of the ground. If you have got all of that counted and punched into the smartest computer you can find. Then you still have some data to collect. Because the numbers are always changing. And everyone uses a different amount every day. This alone can stop any predictions cold for obvious. Reasons. So in conclusion, There literally is a large amount of Static variables and a few constant variables to consider when predicting future supply. This is why simply internet searching these things often gives numbers that are highly different from eachother. Being both controversial and uncertain.