The value of the van't Hoff factor for the given solute is 2.7
Option (A) 2.7 is correct.
The Van't Hoff factor is a measure of a solute's effect on colligative qualities such boiling point elevation, osmotic pressure, and relative vapor pressure reduction.
Given,
Molar mass is 132.15 g/mol
Boiling point elevation is 102.5 °C
kb for water is 0.512°c/m
Molarity of solution is 1.83 m
The value of van't Hoff factor is: 2.66 or 2.7 (approx)
Now, from the solution of colligative properties to calculate elevation in boiling point.
where Δ = elevation of boiling point (102.5)
Thus, The value is 2.7 option (A) is correct.
Learn more about van't Hoff factor, here:
We need to know the value of van't hoff factor.
The van't hoff factor is: 2.66 or 2.7 (approximately)
(NH₄)₂SO₄ is an ionic compound, so it dissociates in solution and produces 3 ionic species. Therefore van't hoff factor is more than one.
From the equation: Δ=i
.m, where Δ
= elevation of boiling point=102.5 - 100=2.5°C.
m=molality of solute=1.83 m (Given)
= Ebullioscopic constant or Boiling point elevation constant= 0.512°C/m (Given)
i= Van't Hoff factor
So, 2.5= i X 0.512 X 1.83
i=
i=2.66= 2.7 (approx.)
Chromatography is a pretty accurate description of what happens to ink on wet paper, because it literally means "color writing" (from the Greek words chroma and graphe). Really, though, it's a bit of a misnomer because it often doesn't involve color, paper, ink, or writing. Chromatography is actually a way of separating out a mixture of chemicals, which are in gas or liquid form, by letting them creep slowly past another substance, which is typically a liquid or solid. So, with the ink and paper trick for example, we have a liquid (the ink) dissolved in water or another solvent creeping over the surface of a solid (the paper).
The essential thing about chromatography is that we have some mixture in one state of matter (something like a gas or liquid) moving over the surface of something else in another state of matter (a liquid or solid) that stays where it is. The moving substance is called the mobile phase and the substance that stays put is the stationary phase. As the mobile phase moves, it separates out into its components on the stationary phase. We can then identify them one by one.
Molar mass of the weak base = 82.0343g/mole.
Note: pKa = -logKa
pKb = -logKb
pH + pOH = 14
[H+ ] [OH- ] = 10^-14
Answer:
11.39
Explanation:
Given that:
Given that:
Mass = 1.805 g
Molar mass = 82.0343 g/mol
The formula for the calculation of moles is shown below:
Thus,
Given Volume = 55 mL = 0.055 L ( 1 mL = 0.001 L)
Concentration = 0.4 M
Consider the ICE take for the dissociation of the base as:
B + H₂O ⇄ BH⁺ + OH⁻
At t=0 0.4 - -
At t =equilibrium (0.4-x) x x
The expression for dissociation constant is:
x is very small, so (0.4 - x) ≅ 0.4
Solving for x, we get:
x = 2.4606×10⁻³ M
pOH = -log[OH⁻] = -log(2.4606×10⁻³) = 2.61
pH = 14 - pOH = 14 - 2.61 = 11.39
B. Every atom absorbs all wavelengths of light energy or electromagnetic radiation.
C. Electrons give off electromagnetic radiation when they jump from a high to a low energy level.
D. Electrons are perfectly evenly distributed throughout the atom.
Answer: C. Electrons give off electromagnetic radiation when they jump from a high to a low energy level.
Explanation:
Electrons give off electromagnetic radiation when they jump from a high to a low energy level in the quantum mechanical atomic model. This is known as the emission spectrum of an atom, and each element has its unique emission spectrum. This phenomenon was explained by the Bohr model of the atom and is a fundamental concept of the quantum mechanical atomic model.
Option A is incorrect because atoms cannot absorb or emit electrons from the nucleus when they interact with electromagnetic radiation. Option B is also incorrect because atoms only absorb certain wavelengths of light energy or electromagnetic radiation, which corresponds to the energy difference between electron energy levels. Option D is incorrect because electrons are not evenly distributed throughout the atom in the quantum mechanical atomic model; instead, they occupy specific energy levels or orbitals.
IR data: 3400 (broad), 3250 (broad), 1590, 820 cm^(-1).
Draw your proposed structure below.
Answer:
Please refer to the attachment below.
Explanation:
Please refer to the attachment below for explanation.
Answer:
ksp = 0,176
Explanation:
The borax (Na₂borate) in water is in equilibrium, thus:
Na₂borate(s) ⇄ borate²⁻(aq) + 2Na⁺(aq)
When you add just borax, the moles of Na²⁺ are twice the moles of borate²⁻, that means 2borate²⁻=Na⁺ (1)
The ksp is defined as:
ksp = [borate²⁻] [Na⁺]²
Then, borate²⁻(B₄O₇²⁻) reacts with HCl thus:
B₄O₇²⁻ + 2HCl + 5H₂O → 4H₃BO₃ + 2Cl⁻
The moles of HCl that reacts with B₄O₇²⁻ are:
0,500M×0,01200L = 6,00x10⁻³ mol of HCl
As two moles of HCl react with 1 mol of B₄O₇²⁻, the moles of B₄O₇²⁻ are:
6,00x10⁻³ mol of HCl× = 3,00x10⁻³ mol of B₄O₇²⁻
For (1), moles of Na⁺ are 3,00x10⁻³ mol ×2 = 6,00x10⁻³ mol of Na⁺
The [borate²⁻] is 3,00x10⁻³ mol of B₄O₇²⁻/0,00850L = 0,353M
And [Na⁺] is 6,00x10⁻³ mol of Na⁺ / 0,00850L = 0,706M
Replacing in the expression of ksp:
ksp = [0,353] [0,706]²
ksp = 0,176
I hope it helps!
The mass of air in room as per given density is 53.2 kg.
To calculate the mass of air contained in a room, we can use the formula:
mass = density x volume
Here, the given density of air is 1.29 g/dm³ at 25°C. We can convert the dimensions of the room to decimeters (dm) by multiplying by 10:
Length = 2.50 m × 10 = 25 dm
Width = 5.50 m × 10 = 55 dm
Height = 3.00 m × 10 = 30 dm
Now, we can calculate the volume of the room by multiplying the three dimensions:
Volume = length x width x height
Volume = 25 dm x 55 dm x 30 dm
Volume = 41,250 dm³
Finally, we can use the formula to calculate the mass of air:
mass = density x volume
mass = 1.29 g/dm³ x 41,250 dm³
mass = 53,212.5 g or 53.2 kg
Therefore, the mass of air contained in the room is approximately 53.2 kg.
Learn more about density,here:
#SPJ3
Explanation:
please mark me as brainlest