How many atoms does 6H2O contain

Answers

Answer 1
Answer:

Answer:

two atoms of oxygen. For H2O, there is one atom of oxygen and two atoms of hydrogen.


Related Questions

Predict the products and write balanced net ionic equations for the following reactions. (g) SnCl2 is added to KMnO4 solution (acidic) forming Mn2
A lab group was calculating the speed of a radio car. They measured the distance traveled to be 6 meters and the time to be 3.5 seconds. Then they divided the distance by the time to find the speed. The actual speed was 2.2 m/s. What was their percent error?
Chloride is nearly twice the size of chlorine even though it only gains one electron. Explain why.
Arrange the following aqueous solutions in order of decreasing freezing points: 0.10 m KNO3, 0.10 m BaCl2, 0.10 m ethylene glycol ​[C2H4(OH)2, antifreeze], and 0.10 m Na3PO4.
C6H6NCl On the basis of the molecular formula, 1H NMR data, and IR data provided, propose a consistent structure.H`NMR data: δ 300 (s, 2H), 6.57 (d, 2H), 7.05 (d, 2H) IR data: 3400 (broad), 3250 (broad), 1590, 820 cm^(-1).Draw your proposed structure below.

Note: Please show all work and calculation setups to get full credit. T. he following may be used on this assignment: specific heat of (water=4.184 J/g oC; ice=2.03 J/g oC; steam=1.99 184 J/g oC); heat of fusion of water=80. cal/g; heat of vaporization=540 cal/g; 1cal=4.184J.Calculate the energy required (in J) to convert 25 g of ice at -15 oC to water at 75 oC.

Answers

Answer:

1.7 × 10⁴ J

Explanation:

Step 1: Calculate the heat required to raise the temperature of ice from -15 °C to 0°C

We will use the following expression.

Q₁ = c(ice) × m × ΔT

Q₁ = 2.03 J/g.°C × 25 g × [0°C - (-15°C)] = 7.6 × 10² J

Step 2: Calculate the heat required to melt 25 g of ice

We will use the following expression.

Q₂ = C(fusion) × m

Q₂ = 80. cal/g × 25 g × 4.184 J/1 cal = 8.4 × 10³ J

Step 3: Calculate the heat required to raise the temperature of water from 0°C to 75 °C

We will use the following expression.

Q₃ = c(water) × m × ΔT

Q₃ = 4.184 J/g.°C × 25 g × (75°C - 0°C) = 7.8 × 10³ J

Step 4: Calculate the total heat required

Q = Q₁ + Q₂ + Q₃

Q = 7.6 × 10² J + 8.4 × 10³ J + 7.8 × 10³ J = 1.7 × 10⁴ J

What are the components of DNA? A. ribose sugar, cytosine, guanine, adenine, thymine, and phosphate group

B. ribose sugar, cytosine, guanine, adenine, uracil, and phosphate group

C. deoxyribose sugar, cytosine, guanine, adenine, thymine, and phosphate group

D. deoxyribose sugar, cytosine, guanine, adenine, uracil, and phosphate group

Answers

Answer:

C

Explanation:

A-T G-C

help asap What type of cell does the cheek cell represent, plant cell or animal cell? What did you see that let you know?

Answers

Answer:

The human cheek cell is a good example of a typical animal cell. It has a prominent nucleus and a flexible cell membrane which gives the cell its irregular, soft-looking shape.

Consider the following reaction at equilibrium. What effect will adding 1.4 mole of He to the reaction mixture have on the system? 2 H2S(g) + 3 O2(g) ⇌ 2 H2O(g) + 2 SO2(g) Consider the following reaction at equilibrium. What effect will adding 1.4 mole of He to the reaction mixture have on the system? 2 H2S(g) + 3 O2(g) ⇌ 2 H2O(g) + 2 SO2(g) The reaction will shift to the left in the direction of reactants. No effect will be observed. The reaction will shift to the right in the direction of products. The equilibrium constant will increase. The equilibrium constant will decrease.

Answers

Answer:

The reaction will shift to the left in the direction of reactants.

Explanation:

According to Le Chatelier's principle, when an external constraint is applied to a chemical system in equilibrium, the system adjust in order to annul the effect impose on it by the external system.

Also, from the principle, the addition of an inert gas can affect the equilbrium of a gaseous system, but only if the volume is allowed to change.

There are two cases on which equilibrium depends. These are:

1. Addition of an inert gas at constant volume:

When an inert gas is added to the system in equilibrium at constant volume, the total pressure will increase. But the concentrations of the products and reactants (i.e. ratio of their moles to the volume of the container) will not change.  Hence, there will be no effect on the equilibrium.  

2. Addition of an inert gas at constant pressure:

When an inert gas is added to a system in equilibrium at constant pressure, then the total volume will increase(i.e. the number of moles per unit volume of various reactants and products will decrease). Hence, the equilibrium will shift towards the direction in which there is increase in number of moles of gases.  

Considering the given reaction in equilibrium:

2H₂S(g) + 3O₂(g) ⇌ 2H₂O(g) + 2SO₂(g)

The addition of an inert gas at constant pressure to the above reaction will shift the equilibrium towards the backward direction because the number of moles of reactants is more than the number of moles of the products.

Final answer:

Adding 1.4 moles of He to the reaction mixture will have no effect on the equilibrium of the system.

Explanation:

Adding 1.4 moles of He to the reaction mixture will have no effect on the system. The equilibrium of the reaction will not shift to the left or right, and there will be no change in the equilibrium constant. This is because He is considered an inert gas and does not participate in the reaction.

Learn more about Effect of adding He to a reaction mixture here:

brainly.com/question/16201332

#SPJ12

How many moles of atoms are in 9.00 g of 13c? express your answer numerically in moles?

Answers

Number of moles is defined as the ratio of given mass in grams to the molar mass of compound.

Number of moles =(Given mass in g)/(Molar mass)

Now, put the value of given mass of ^(13)C in grams and molar mass of ^(13)C in g/mol i.e. 13 g/mol.

Thus,

number of moles =(9.00 g)/(13 g/mol)

= 0.692 mol

Hence, number of moles of ^(13)C = 0.692 mol

When the reaction mixture is worked-up, it is first washed three times with 5% sodium bicarbonate, and then with a saturated nacl solution. explain why?

Answers

Solution:

After the reaction of mixture is worked-up Washing three times the organic  with sodium carbonate helps to decrease the solubility of the organic layer into the aqueous layer. This allows the organic layer to be separated more easily.

And then the reaction washed by saturated NACL we have The bulk of the water can often be removed by shaking or "washing" the organic layer with saturated aqueous sodium chloride (otherwise known as brine). The salt water works to pull the water from the organic layer to the water layer.