Chloride is nearly twice the size of chlorine even though it only gains one electron. Explain why.

Answers

Answer 1
Answer: Chloride is nearly twice the size of chlorine due to the fact that when it does gain an electron, the atomic radius also increases. Chloride ion has a bigger atomic radius due to an increase in number of electrons


Related Questions

In compliance with conservation of energy, Einstein explained that in the photoelectric effect, the energy of a photon (hv) absorbed by a metal is the sum of the work function (Φ), the minimum energy needed to dislodge an electron from the metal’s surface, and the kinetic energy (Ek) of the electron: hv = Φ + Ek. When light of wavelength 358.1 nm falls on the surface of potassium metal, the speed (u) of the dislodged electron is 6.40 x 10⁵ m7s. (a) What is Ek (½mu²) of the dislodged electron? (b) What is Φ (in J) of potassium?
The ph of coffee is 5.6. The ph of grapefruit juice is 2.6. This means that the proton concentration in coffee is
A 51.9g sample of iron, which has a specific heat capacity of 0.449·J·g?1°C?1, is put into a calorimeter (see sketch at right) that contains 300.0g of water. The temperature of the water starts off at 19.0°C. When the temperature of the water stops changing it's 20.3°C. The pressure remains constant at 1atm. Calculate the initial temperature of the iron sample. Be sure your answer is rounded to 2 significant digits.
How much heat is required to change the temperature of two cups of water (500 g) from room temperature (25◦C) to boiling? Specific heat of water is c=4.184 J/(g oC) a 78.5 kJ b 15.7 kJ c 157 kJ d 1.57 kJ
In the first step, 4-sulfanilic acid reacts with sodium nitrate to form diazonium ion intermediate. Identify the Lewis acid and Lewis base in this reaction.

The voltage generated by the zinc concentration cell described by, zn(s)|zn2 (aq, 0.100 m)||zn2 (aq, ? m)|zn(s),is 16.0 mv at 25 °c. calculate the concentration of the zn2 (aq) ion at the cathode.

Answers

The concentration cell is:
Zn(s) \ Zn²⁺(aq,0.100 M) // Zn²⁺(aq, x M) \ Zn(s)
voltage = 16 mV x (1V / 10³ mV) = 16 x 10⁻³ V
- In the cell notation, the concentration on the left is that of the anode and that on the right is that of the cathode.
- Oxidation takes place at the anode and reduction takes place at the cathode.
so [Zn²⁺]oxidation = 0.100 M
[Zn²⁺] reduction = x M
From Nernst equation:
Ecell = -0.0592 / n log [Zn²⁺] oxidation / [Zn²⁺]reduction
Number of electrons, n = 2. Substitute and solve for x:
16 x 10⁻³ V = - 0.0592 / 2 log (0.100 /x)
log 0.100 / x = - 0.54
0.100 / x = 0.288
x = 0.347
So the concentration of Zn²⁺ at the cathode = 0.406

 

How many moles of carbondioxide are produced when 0.2mol of sodium carbonate react with excess hydrovhloric acid

Answers

Answer:

0.2 moles of CO₂  are produced

Explanation:

Given data:

Moles of CO₂ produced = ?

Moles of Na₂CO₃ react = 0.2 mol

Solution:

Chemical equation:

Na₂CO₃ + 2HCl       →     2NaCl + CO₂ + H₂O

Now we will compare the moles of CO₂ with Na₂CO₃ .

                   Na₂CO₃          :             CO₂

                       1                  :               1

                    0.2                :             0.2

Thus, 0.2 moles of CO₂  are produced.

If 6.81 mol of an ideal gas has a pressure of 2.99 atm and a volume of 94.35 L, what is the temperature of the sample?

Answers

Answer:

504.57 K.

Explanation:

From the question given above, the following data were obtained:

Number of mole (n) = 6.81 moles

Pressure (P) = 2.99 atm

Volume (V) = 94.35 L

Gas constant (R) = 0.0821 atm.L/Kmol

Temperature (T) =.?

Using the ideal gas equation, the temperature of the ideal gas can be obtained as follow:

PV = nRT

2.99 × 94.35 = 6.81 × 0.0821 × T

282.1065 = 0.559101 × T

Divide both side by 0.559101

T = 282.1065 / 0.559101

T = 504.57 K.

Thus, the temperature of the ideal gas is 504.57 K.

Choose the option below that is a characteristic of ketones. a. They contain a carbonyl group that exhibits sp hybridization around the carbon atom.
b. They contain a carbonyl group with a nonpolar carbon-oxygen bond.
c. The functional group of this type of compound must always be on the end of a carbon chain.
d. The functional group of this type of compound must always be in the middle of a carbon chain.

Answers

Answer:

Option d.

Explanation:

Ketones contain a carbonyl groups as a functional group, which is a carbon bonded to oxygen with a double bond. In a ketone, the carbon is always bonded to two carbon atoms:

R-C(=O)-R'  

The carbon in the carbonyl group has a hybridization sp2 (3 hybrid orbitals with an unhybridized p orbital), where two of the orbitals form sigma (σ) bonds with the other two carbons (R-C-R') and the other hybrid orbital form a sigma bond with the oxygen (C-O). The unhybridized p orbital on the carbon atom is used to form a pi (π) bond with the oxygen, thus forming the double bond (C=O).  

The bond of a carbonyl group is polar, because of the difference of the electronegativity between the carbon atom and the oxygen atom.  

Hence, from all of the above we can discard the option a, (the carbonyl groups exhibits sp2 hybridization), the option b (carbon-oxygen bond is a bond polar) and the option c (the group must always be in the middle of a carbon chain, the groups that are always in the end, are a aldehyde groups).

Therefore, the correct option is d, the functional group of this type of compound must always be in the middle of a carbon chain.

I hope it helps you!

Answer:

d. The functional group of this type of compound must always be in the middle of a carbon chain.

Explanation:

Under what set of conditions does HCl(g) deviate the most from ideal behavior?a) high temperature and low pressure.b) low temperature and high pressure.c) high temperature and high pressure.d) low temperature and low pressure. e) standard temperatore and pressure.

Answers

Answer:

b) low temperature and high pressure

Explanation:

Deviation of gases from their ideal behavior could be as a result of two things which include a very small volume for the gases and the collisions not being elastic enough.

Small volume will decrease the frequency of elastic collisions a gas will experience as a result of the tiny space.

Low temperature will decrease the amount of elastic collisions and energy of the gas and high pressure will decrease the volume which is why there will be a deviation in the ideal behavior of Hcl(g)

Balance the equation: KL+Pb(NO3)2→PbL2+KNO3

Answers

is that Lr? I'm not sure what the L one stand for?
2:1:1:2
Other Questions