Answer:
A property that changes if the amount of substance changes
Explanation:
An extensive property is a property that depends on the amount of matter in a sample.
An extensive property changes if the amount of substance changes. For instance, mass and volume are extensive properties as they would vary depending on the amount of substance.
An extensive property is a property that changes if the amount of substance changes. For example, mass and volume are extensive properties. If you have two separate samples of a substance, each with a different amount, their mass and volume would be different. On the other hand, the melting point or boiling point of the substance, which are examples of intensive properties, would not change regardless of the amount of substance.
#SPJ12
What is the mole ratio of oxygen to pentane?
Answer:
8 : 1
Explanation:
The balanced equation for the reaction is given below:
C5H12 + 8O2 → 5CO2 + 6H2O
From the balanced equation above,
1 mole of C5H12 reacted with 8 moles of O2.
Thus the mole ratio of O2 to C5H12 is:
8 : 1
Answer:
8:1 !!!
Explanation:
I Just take the test
Answer:
This question is incomplete
Explanation:
This question is incomplete. However, it should be noted that if the containers are compared with an equal average volume, the containers having solids will have larger masses than that containing liquid which will also have a larger mass than that containing gas. This is because solids have there molecules touching each other in compact manner which makes the molecule exert a certain combined force/mass. The molecules of liquid are also close to one another but are not compact like the solids and are hence exerting a lesser force/mass than solids. Gases have free molecules that are far apart and thus are usually the lightest when they occupy the same volume as liquids and solids.
b) Calculate the mass of NaHCO3 required to produce 20.5 g of CO2.
Answer:
a. NaHCO₃ + HCl → NaCl + H₂O + CO₂
b. 39.14 g is the mass of NaHCO₃ required to produce 20.5 moles of CO₂
Explanation:
A possible reaction for NaHCO₃ to make dioxide is this one, when it reacts with hydrochloric to produce the mentioned gas.
NaHCO₃ + HCl → NaCl + H₂O + CO₂
Ratio in this reaction is 1:1
So 1 mol of baking soda, produce 1 mol of CO₂
Let's calculate the moles
20.5 g CO₂ / 44 g/m = 0.466 moles
This moles of gas came from the same moles of salt.
Molar mass baking soda = 84 g/m
Molar mass . moles = mass
84 g/m . 0.466 moles = 39.14 g
Br-1
(NO3)-1
(SO3)2
Answer:
See explanation
Explanation:
Hello there!
In this case, since the the concentrations are not given, and not even the Ksp, we can solve this problem by setting up the chemical equation, the equilibrium constant expression and the ICE table only:
Next, the equilibrium expression according to the produced aqueous species as the solid silver chloride is not involved in there:
And therefore, the ICE table, in which x stands for the molar solubility of the silver chloride:
I - 0 0
C - +x +x
E - x x
Which leads to the following modified equilibrium expression:
Unfortunately, values were not given, and they cannot be arbitrarily assigned or assumed.
Regards!
Answer:
a) Warmer
b) Exothermic
c) -10.71 kJ
Explanation:
The reaction:
KOH(s) → KOH(aq) + 43 kJ/mol
It is an exothermic reaction since the reaction liberates 43 kJ per mol of KOH dissolved.
Hence, the dissolution of potassium hydroxide pellets to water provokes that the beaker gets warmer for being an exothermic reaction.
The enthalpy change for the dissolution of 14 g of KOH is:
Where:
m: is the mass of KOH = 14 g
M: is the molar mass = 56.1056 g/mol
The enthalpy change is:
The minus sign of 43 is because the reaction is exothermic.
I hope it helps you!