Calculate the mass of the air contained in a room that measures 2.50 m × 5.50 m × 3.00 m (density of air = 1.29 g/dm3 at 25°C).

Answers

Answer 1
Answer:

The mass of air in room as per given density is 53.2 kg.

To calculate the mass of air contained in a room, we can use the formula:

mass = density x volume

Here, the given density of air is 1.29 g/dm³ at 25°C. We can convert the dimensions of the room to decimeters (dm) by multiplying by 10:

Length = 2.50 m × 10 = 25 dm

Width = 5.50 m × 10 = 55 dm

Height = 3.00 m × 10 = 30 dm

Now, we can calculate the volume of the room by multiplying the three dimensions:

Volume = length x width x height

Volume = 25 dm x 55 dm x 30 dm

Volume = 41,250 dm³

Finally, we can use the formula to calculate the mass of air:

mass = density x volume

mass = 1.29 g/dm³ x 41,250 dm³

mass = 53,212.5 g or 53.2 kg

Therefore, the mass of air contained in the room is approximately 53.2 kg.

Learn more about density,here:

brainly.com/question/29775886

#SPJ3

Answer 2
Answer:

Explanation:

please mark me as brainlest


Related Questions

What will be the theoretical yield of tungsten(is) ,W, if 45.0 g of WO3 combines as completely as possible with 1.50 g of H2
The combustion of 0.295 kg of propane produces 712 g of carbon dioxide. What is the percent yield of carbon dioxide? ( Make sure to balance equation) C3H8 (g)+ 029) à co2 g H200 0a. 124% b. 41 .4% c. 80.5%d. 0.805 %
The standard entropy of Pb(s) at 298.15 K is 64.80 J K–1 mol–1. Assume that the heat capacity of Pb(s) is given by: CP,m(Pb, s) J K−1mol−1 = 22.13 + 0.01172 T K + 1.00 x 10−5 T 2 K2 The melting point is 327.4 ℃ and the heat of fusion is 4770 J mol-1. Assume that the heat capacity of Pb(l) is given by: CP,m(Pb, l) J K−1mol−1 = 32.51 − 0.00301 T K Calculate the standard entropy of Pb(l) at 500 ℃
Calculate the volume of 8.87×10-2 M calcium hydroxide required to neutralize 15.0 mL of a 0.389 M hydrobromic acid solution. mL
A car travels with a speed of 91.4 kilometers per hour (km/hr). Convert this speed to meters per second (m/s). Show your work.Round your final answer to three significant figures.Type your answer...

Identify which location in the periodic table you would have the
largest atomic radii.

Answers

Answer:

left to right across a period when it decreases and when it increases top to bottom in a group,

hope i helped

The amount of heat required to melt 2 lbs of ice is twice the amount of heat required to melt 1 ib of ice. is this observation a macroscopic or microscopic description of chemical behavior? Explain your answer.

Answers

The observation in this instance relates to the quantity of heat needed to melt ice, and it is expressed in terms of weights (2 lbs and 1 lb) and a comparison (twice the amount).

Without going into detail into the different molecules or their interactions, it concentrates on the general behaviour and characteristics of the substance (ice) as a whole.

A microscopic description, on the other hand, would describe the behaviour in terms of the molecular or atomic interactions that take place at the particle level. It would go into ideas such as the amount of heat required to dissolve the intermolecular interactions between water molecules.

Therefore, the observation regarding how much heat is needed to melt ice is a macroscopic description since it ignores the underlying molecular interactions in favour of the substance's general behaviour and qualities.        

Learn more about Molecules, refer to the link:

brainly.com/question/32298217

#SPJ12

The observation that melting 2 lbs of ice requires twice the heat of melting 1 lb is a macroscopic description, focusing on observable properties and behavior without exploring microscopic details.

This observation is a macroscopic description of chemical behavior. Macroscopic descriptions involve the properties and behavior of substances on a large scale that can be observed directly, without delving into the molecular or atomic details. In this case, the statement refers to the amount of heat required to melt a certain quantity of ice, and it is expressed in terms of macroscopic, measurable quantities (pounds of ice and the associated heat).

The macroscopic observation does not provide insight into the molecular or atomic interactions within the ice but rather focuses on the overall behavior of the substance. The concept that the amount of heat required to melt 2 lbs of ice is twice that needed for 1 lb of ice is a statement about the material's behavior at a larger scale.

This observation aligns with the macroscopic principles of heat and phase transitions, where the heat required for a phase change is directly proportional to the mass of the substance undergoing the transition. The macroscopic perspective is concerned with observable properties and measurements, making it a practical and accessible way to describe chemical behavior without delving into microscopic details.

For more such information on: melting

brainly.com/question/40140

#SPJ6

Consider the reaction: 2 HI (g) ⇌ H₂ (g) + I₂ (g) At equilibrium, the partial pressure of HI is 1.9 atm and the partial pressures of H₂ and I₂ are 7.9 and 2.3 respectively. What is Kp for this equilibrium?

Answers

Answer:

To determine the value of Kp for the given equilibrium, we need to use the partial pressures of the gases involved.

In the balanced equation: 2 HI (g) ⇌ H₂ (g) + I₂ (g), the stoichiometric coefficients are 2, 1, and 1 respectively.

At equilibrium, the expression for Kp is given by:

Kp = (P(H₂) * P(I₂)) / (P(HI)²)

Using the provided partial pressures:

P(HI) = 1.9 atm

P(H₂) = 7.9 atm

P(I₂) = 2.3 atm

Substituting these values into the expression for Kp:

Kp = (7.9 * 2.3) / (1.9²)

Kp ≈ 19.5 / 3.61

Calculating the result:

Kp ≈ 5.4

Therefore, the value of Kp for the given equilibrium is approximately 5.4.

MARK AS BRAINLIEST!!!

5. The partition coefficient of Compound A is 7.5 in dichloromethane (a.k.a. methylene chloride) with respect to water. a. If 5 grams of Compound A were dissolved in 100 mL of water, how much of Compound A would be extracted with four 25-mL portions of dichloromethane

Answers

Answer:

4.93g are extracted

Explanation:

Partition coefficient (P) is defined as the ratio of solute dissolved in the organic solvent and the solute dissolved in the aqueous phase.

That is:

P = 7.5 = Concentration in dichloromethane / Concentration in water.

Knowing this, in the first extraction with 25mL of dichloromethane you will extract:

7.5 = (X/25mL) / (5g - X) / 100mL

Where X is the amount of compound A that is extracted.

7.5 = 100X / (125 - 25X)

937.5 - 187.5X = 100X

937.5 = 287.5X

3.26g of A are extracted in the first extraction.

In water will remain 5g - 3.26g = 1.74g

In the second extraction you will extract:

7.5 = (X/25mL) / (1.74g - X) / 100mL

7.5 = 100X / (43.5 - 25X)

326.25 - 187.5X = 100X

326.25 = 287.5X

1.13g are extracted in the second extraction.

And remain: 1.74g - 1.13g = 0.61g

In the third extraction you will extract:

7.5 = (X/25mL) / (0.61g - X) / 100mL

7.5 = 100X / (15.25 - 25X)

114.375 - 187.5X = 100X

114.375 = 287.5X

0.40g are extracted in the third extraction.

And remain: 0.61g - 0.40g = 0.21g

In the second extraction you will extract:

7.5 = (X/25mL) / (0.21g - X) / 100mL

7.5 = 100X / (5.25 - 25X)

39.375 - 187.5X = 100X

39.375 = 287.5X

0.14g are extracted in the fourth extraction.

Thus, after the three extractions you will extract: 0.14g + 0.40g + 1.13g + 3.26g = 4.93g are extracted

Final answer:

The process involves using the partitioncoefficient to determine how much of Compound A will prefer the dichloromethane solvent over the water. Following a calculation process through four rounds of extraction, it is concluded that approximately 4.999g of Compound A will be extracted using four 25mL portions of dichloromethane.

Explanation:

The partition coefficient of a compound is a measure of how much it prefers one solvent over another. Given that the partition coefficient of Compound A is 7.5 in dichloromethane with respect to water, we can predict how much of this compound could be extracted using four separate 25 mL portions of dichloromethane.

Here's the step-by-step calculation process:

  1. We start with 5 grams of Compound A in 100 mL of water. Given the partition coefficient, in the initial phase, 5/(7.5+1)=0.625g remains in water and 7.5/8.5*5=4.375g goes into the dichloromethane.
  2. After one extraction with 25ml of dichloromethane, the amount left in the water will be 0.625g*1/(7.5+1)=0.069g.
  3. After the second extraction: 0.069g*1/(7.5+1) = 0.008g.
  4. After the third extraction: 0.008g*1/(7.5+1) = 0.0009g.
  5. After the fourth extraction: 0.0009g*1/(7.5+1) = 0.0001g.

In total, around 4.999g of compound A will be extracted using four 25mL portions of dichloromethane.

Learn more about Partition Coefficient here:

brainly.com/question/31607446

#SPJ3

Plants make their own food through a process called ____________.(6th grade science)

Answers

Answer:

Photosynthesis

Explanation:

Question:

Plants make their own food through a process called ____________.(6th grade science)

Answer:

The correct answer to the blank is photosynthesis. Photosynthesis is the process that enables plants to get energy from the sun. Light energy from the sun is converted into chemical energy by chlorophyll. Chlorophyll gives plants their green color.

Note: Sorry if this is not the answer you were looking for, but if this is a question from a test, please tell me so I can answer your question correctly (also credit to first person who answered).

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

If this helped, your welcome! Please know that I might be wrong, and if I am, I am truly sorry for that. But If you would, please make me brainliest.

I hope you have a rest of your great day! If there is an issue with this question, be happy to comment. <3

-niaxfandoms (insta and yt)

You need to prepare a solution with a specific concentration of Na+Na+ ions; however, someone used the end of the stock solution of NaClNaCl, and there isn’t any NaClNaCl to be found in the lab. You do, however, have some Na2SO4Na2SO4. Can you substitute the same number of grams of Na2SO4Na2SO4 for the NaClNaCl in a solution? Why or why not?

Answers

Explanation:

Ionic equation

NaCl(aq) --> Na+(aq) + Cl-(aq)

Na2SO4(aq) --> 2Na+(aq) + SO4^2-(aq)

In NaCl solution, 1 mole of Na+ is dissociated in 1 liter of solution while in Na2SO4, 2 moles of Na+ is dissociated in 1 liter of solution.

Molecular weight of NA2SO4 = (23*2) + 32 + (16*4)

= 142 g/mol

Molecular weight of NaCl = 23 + 35.5

= 58.5 g/mol

Masses

% Mass of NA+ in Na2SO4 = mass of Na+/total mass of Na2SO4 * 100

= 46/142 * 100

= 32.4%

% Mass of NA+ in NaCl = mass of Na+/total mass of NaCl * 100

= 23/58.5 * 100

= 39.3%

Therefore, the % mass of Na+ in NaCl and Na2SO4 are different so it cannot be used.

Final answer:

You cannot substitute Na2SO4 directly for NaCl based on mass since they have different molar masses. The same mass of Na2SO4 will provide more Na+ ions than NaCl, leading to a change in the Na+ ion concentration.

Explanation:

No, you cannot substitute the same number of grams of Na2SO4 for the NaCl in a solution. This is because NaCl and Na2SO4 have different molar masses and therefore different numbers of moles per gram. The concentration of a solution is determined by the number of moles of solute per unit volume of solvent, not the mass. Hence, using the same mass of a different compound would alter the concentration of Na+ ions in the solution.

For instance, if one mole of NaCl gives us one mole of Na+, one mole of Na2SO4 will provide two moles of Na+. In other words, the same mass of Na2SO4 contains more Na+ ions than the same mass of NaCl. So using the same mass of Na2SO4 in place of NaCl will result in a solution with a higher Na+ ion concentration.

Learn more about Chemical Substitution here:

brainly.com/question/31649818

#SPJ3