The Sun delivers an average power of 1150 W/m2 to the top of the Earth’s atmosphere. The permeability of free space is 4π × 10−7 T · N/A and the speed of light is 2.99792 × 108 m/s. Find the magnitude of Em for the electromagnetic waves at the top of the atmosphere. Answer in units of N/C.

Answers

Answer 1
Answer:

Answer:

E=930.84 N/C

Explanation:

Given that

I = 1150 W/m²

μ = 4Π x 10⁻⁷

C = 2.999 x 10⁸ m/s

E= C B

C=speed of light

B=Magnetic filed  ,E=Electric filed

Power  P = I A

A=Area=4πr²  ,I=Intensity

I=(CB^2)/(2\mu_0)

I=(CE^2)/(2\mu_0 C^2)

E=\sqrt{{2I\mu_0 C}}

E=\sqrt{{2* 1150* 4\pi * 10^(-7)(2.99792* 10^8)}}

E=930.84 N/C

Therefore answer is 930.84 N/C

Answer 2
Answer:

Final answer:

To find the magnitude Em of the electromagnetic waves at the top of the earth's atmosphere, we use the intensity of electromagnetic wave and solving the equation Em = sqrt(2Icμo), we can find the magnitude of Em in units of N/C.

Explanation:

To find the magnitude Em of the electromagnetic waves at the top of the Earth's atmosphere, we use the fact that the power received per unit area is the intensity I of the electromagnetic wave. According to the given information, this intensity is 1150 W/m2. The relationship between the intensity and electromagnetic fields is given by the equation I = 0.5 * E²/c * μo. Solving for Em, we get Em = sqrt(2Icμo), where μo = 4π × 10-7 T N/A² is the permeability of free space and c = 2.99792 × 10⁸ m/s is the speed of light.

Subbing in the given values, we can compute Em as:

Em = sqrt[2 * 1150 W/m² * 2.99792 × 10⁸ m/s * 4π × 10-7 T N/A²]

This computation will give the strength of the electric field at the top of the earth’s atmosphere in units of N/C.

Learn more about Electromagnetic Waves here:

brainly.com/question/29774932

#SPJ11


Related Questions

How long does it take a wheel that is rotating at 33.3 rpm to speed up to 78.0 rpm if it has an angular acceleration of 2.15 rad/ s 2?
A fully loaded, slow-moving freight elevator has a cab with a total mass of 1200 kg, which is required to travel upward 35 m in 3.5 min, starting and ending at rest. The elevator's counterweight has a mass of only 940 kg, so the elevator motor must help pull the cab upward. What average power is required of the force the motor exerts on the cab via the cable
A 50.0-kg box is being pulled along a horizontal surface by means of a rope that exerts a force of 250 n at an angle of 32.0° above the horizontal. the coefficient of kinetic friction between the box and the surface is 0.350. what is the acceleration of the box?
At a given instant the bottom A of the ladder has an acceleration aA = 4 f t/s2 and velocity vA = 6 f t/s, both acting to the left. Determine the acceleration of the top of the ladder, B, and the ladder’s angular acceleration at this same instant.
A conveyor belt is used to move sand from one place to another in a factory. The conveyor is tilted at an angle of 18° above the horizontal and the sand is moved without slipping at the rate of 2 m/s. The sand is collected in a big drum 5 m below the end of the conveyor belt. Determine the horizontal distance between the end of the conveyor belt and the middle of the collecting drum.

For a very rough pipe wall the friction factor is constant at high Reynolds numbers. For a length L1 the pressure drop over the length is p1. If the length of the pipe is then doubled, what is the relation of the new pressure drop p2 to the original pressure drop p1 at the original mass flow rate?

Answers

Answer: ∆p2 = 2* ∆p1

Explanation:

Given that all other factors remain constant. The pressure drop across the pipeline is directly proportional to the length.

i.e ∆p ~ L

Therefore,

∆p2/L2 = ∆p1/L1

Since L2 = 2 * L1

∆p2/2*L1 = ∆p1/L1

Eliminating L1 we have,

∆p2/2 = ∆p1

Multiplying both sides by 2

∆p2 = 2 * ∆p1

g Adjacent rows in the first part of the experiment are found to have potentials of 3.66 V and 4.22 V. If the distance between rows is found to be 0.4 cm, what is the magnitude of the electric field at the location between the rows

Answers

Answer:

E=140V/m

Explanation:

If the electric field is uniform, the electric field between two points at potentials V_1 and V_2 which are separated by a distance d will be given by the formula:

E=(\Delta V)/(d)

So in our case, we have E=(4.22V-3.66V)/(0.004m)=140V/m

On December 26, 2004, a great earthquake occurred off the coast of Sumatra and triggered immense waves (tsunami) that killed some 200000 people. Satellites observing these waves from space measured 800 from one wave crest to the next and a period between waves of 1.0 hour.Part AWhat was the speed of these waves in m/s?Express your answer using two significant figures.=Part BWhat was the speed of these waves in km/h ?Express your answer using two significant figures.=

Answers

Answers:

a) 222.22 m/s

b) 800.00 km/h

Explanation:

The speed of a wave is given by the following equation:

v=f \lambda

Where:

v is the speed

f=(1)/(T) is the frequency, which has an inverse relation with the period T=1 h

\lambda=800 km is the wavelength

Solving with the given units:

v=(1)/(T)\lambda

v=(1)/(1 h)800 km

v=800.00 km/hThis is the speed of the wave in km/h

Transforming this speed to m/s:

v=800.00 (km)/(h) (1 h)/(3600 s) (1000 m)/(1 km)

v=222.22 m/sThis is the speed of the wave in m/s

Consider three drinking glasses. All three have the same area base, and all three are filled to the same depth with water. Glass A is cylindrical. Glass B is wider at the top than at the bottom, and so holds more water than A. Glass C is narrower at the top than at the bottom, and so holds less water than A. In which glass is the pressure on the base greatest liquid pressure at the bottom?a. Glass Ab. Glass B
c. Glass C
d. All three have equal non-zero pressure at the bottom.
e. All three have zero pressure at the bottom.

Answers

Answer:

d

Explanation:

Pressure of the fluid in any container is a function of density of the fluid in the container, and depth of the fluid.

The static pressure of fluid in a container with depth h is given by:

P = p * g* h

Where p : density of fluid

g: gravitational constant 9.81 m/s^2

h : depth of the fluid

Since, all the glasses filled have same Area base, same depth and same density of fluid and g is constant. The pressure at the bottom of each drinking glass is equal for all cases. As supported by the relationship given above.  

____ can be calculated if you know the distance that an object travels in one unit of time. A.motion
B.meter
C.Rate
D.Speed
E.velocity
F.slope
G.refrence point

PLS HELP NOW !!!

Answers

Speed can be calculated if you know the distance that an object travels in one unit of time, therefore the correct answer is option D.

What is speed?

The total distance covered by any object per unit of time is known as speed. It depends only on the magnitude of the moving object.

The unit of speed is a meter/second. The generally considered unit for speed is a meter per second.

Thus, Speed can be calculated if you know the distance that an object travels in one unit of time, therefore the correct answer is option D.

Learn more about speed from here, refer to the link;

brainly.com/question/7359669

#SPJ2

Answer:

D.Speed

Explanation:

The speed of an object is the distance the object travels in one unit of time.

Which statement best describes how the first quatrain relates to the second quatrain? The first shows the beloved’s actions; the second describes how she imitates them. Both the first and the second show the actions of the speaker and the beloved. The first shows the speaker’s actions; the second shows the beloved’s opposition to them. The first shows the speaker’s sadness; the second shows the beloved’s anger.

Answers

Answer: the first shows the speakers actions; the second shows the beloveds opposition to them

Explanation: