Convert 7 (gcm^2)/(min^2) into a value in standard S.I. units. Be sure to use scientific notation if necessary. You do not need to answer units.

Answers

Answer 1
Answer:

The required value is required in SI units.

The required answer is 1.94*10^(-10)\ \text{kg m}^2/\text{s}^2

SI units

The SI unit of mass, length and time is kg, m and s respectively.

In order to convert one unit into another it has to be multiplied or divided by the conversion factors.

A definite magnitude which has some quantity which is defined by convention or law is called a unit.

The conversion factors are

1\ \text{g}=10^(-3)\ \text{kg}

1\ \text{cm}=10^(-2)\ \text{m}

1\ \text{cm}^2=10^(-4)\ \text{m}^2

1 min = 60 s

1\ \text{min}^2=60*60\ \text{s}^2

So,

7\ \text{g cm}^2/\text{min}^2=7* (10^(-3)* 10^(-4))/(60* 60)\n =1.94*10^(-10)\ \text{kg m}^2/\text{s}^2

Learn more about SI units:

brainly.com/question/16393390

Answer 2
Answer: Hi hi hi hi hi hi hi

Related Questions

Calculate a pendulum's frequency of oscillation (in Hz) if the pendulum completes one cycle in 0.5 s.
Why Coulomb force is called "Mutual Force"???????????????????????????????????????
Three children want to play on a see saw that is 6 meters long and has a fulcrum in the middle. Two of the children are twins and weigh 40 kg each and sit on the same side at a distance 2m and 3m away from the fulcrum. The other child weighs 80 kg. How far away should he sit from the fulcrum so that the see saw is balanced
The surface of an insulating sphere (A) is charged up uniformly with positive charge, and brought very close to an identical–size conducting sphere (B) that has no net charge on it. The spheres do not make contact. A) Sketch the distribution of charge on each sphere.B) Will the spheres attract, repel, or not interact with each other? Explain.C) When the spheres make contact, they repel each other. Explain this behavior.
Where would the normal force exerted on the rover when it rests on the surface of the planet be greater

A traffic light weighing 200N hangs from a vertical cable tied to two other cables that are fastened to to a support ,as shown . The upper cables make angles 41° and 63° with the horizontal . Calculate the tension in of the three cables

Answers

Answer:

  • 93.6 N in the 41° cable
  • 155.6 N in the 63° cable
  • 200 N in the vertical cable

Explanation:

Let T and U represent the tensions in the 41° and 63° cables, respectively. In order for the system to be stationary, the horizontal components of these tensions must balance, and the vertical components of these tensions must total 200 N.

  Tcos(41°) =Ucos(63°) . . . . . balance of horizontal components

  U = Tcos(41°)/cos(63°) . . . . write an expression for U

__

The vertical components must total 200 N, so we have ....

  Tsin(41°) +Usin(63°) = 200

  Tsin(41°) +Tcos(41°)sin(63°)/cos(63°) = 200

  T(sin(41°)cos(63°) +cos(41°)sin(63°))/cos(63°) = 200

  T = 200cos(63°)/sin(41° +63°) ≈ 93.6 . . . newtons

  U = 200cos(41°)/sin(41° +63°) ≈ 155.6 . . . newtons

__

The vertical cable must have sufficient tension to balance the weight of the traffic light, so its tension is 200 N.

Then the tensions in the 3 cables are ...

  41°: 93.6 N

  63°: 155.6 N

  90°: 200 N

The tension in each of the three cables are 94.29, 155.56 and 200 Newton respectively.

Given the following data:

  • Force = 200 Newton.
  • Angle 1 = 41°
  • Angle 2 = 63°

How to calculate the tension.

First of all, we would determine the third tension force based on the vertical component as follows:

\sum F_y = 0\n\nT_3 - F_g =0\n\nT_3 - F_g=200\;N

Next, we would apply Lami's theorem to resolve the forces acting on the traffic light at equilibrium:

For the horizontal component:

\sum F_x = -T_1cos41+T_2cos 63=0\n\n0.7547T_1=0.4540T_2\n\nT_1=(0.4540T_2)/(0.7547)\n\nT_1 = 0.6016T_2   ....equation 1.

For the vertical component:

\sum F_y = T_1sin41+T_2sin 63-T_3=0\n\n\sum F_y = T_1sin41+T_2sin 63-200=0\n\n0.6561T_1+0.8910T_2 =200   ...equation 2.

Substituting eqn. 1 into eqn. 2, we have:

0.6561 * (0.6016T_2)+0.8910T_2 =200\n\n0.3947T_2+0.8910T_2 =200\n\n1.2857T_2 =200\n\nT_2 = (200)/(1.2857) \n\nT_2 = 155.56\;Newton

For the first tension:

T_1 = 0.6061T_2\n\nT_1 = 0.6061 * 155.56\n\nT_1 = 94.29\;Newton

Read more on tension here: brainly.com/question/4080400

Bailey wants to find out which frozen solid melts the fastest: soda, ice, or orange juice. She pours each of the three liquids into the empty cubes of an ice tray, and then places the ice tray in the freezer overnight. The next day, she pulls the ice tray out and sets each cube on its own plate. She then waits and watches for them to melt. When the last part of the frozen liquid melts, she records the time.

Answers

Answer:

its 45 over 6

Explanation:the answer is in  the question

Answer: Only the melted cube's shape changed.

Explanation:

a. A nucleus is made up of protons and neutrons. Protons have positive charges and neutrons have no charge. The strong nuclear force holds the nucleus together because it acts against another force inside the nucleus. What force is the strong nuclear force counteracting?

Answers

Answer:

The electromagnetic force tends to push the protons apart.  (Like forces repel).

Explanation:

Answer:its the electromagnetic force

Explanation:

Protons are positive so repel themselves

A machine can make doing work easier by reducing the force exerted, changing the distance over which the force is exerted, or changing the direction of the force.True OR False


HELP ME!!!!!!¡!!!!

Answers

I believe the correct answer is true. A machine can make doing work easier by reducing the force exerted, changing the distance over which the force is exerted, or changing the direction of the force. Hope this answer the question.

A mouse is running across a room with a speed of 2.2 m/s. The mass of the mouse is 1.4 kg. What is the Kinetic Energy of the mouse?

Answers

Answer:

3.39 J

Explanation:

The kinetic energy of an object can be found by using the formula

k =  (1)/(2) m {v}^(2)  \n

m is the mass

v is the velocity

From the question we have

k =  (1)/(2)  * 1.4 *  {2.2}^(2)  \n  = 0.7 * 4.84 \n  = 3.388 \:  \:  \:  \:  \:  \:  \:  \:  \:

We have the final answer as

3.39 J

Hope this helps you

Answer:

im not sure

Explanation:

How many joules of work are done on an object when a force of 10 N pushes it 5 m?A) 2 J
B) 5 J
C) 50 J
D) 1 J
E) 10 J

Answers

Answer:

option C

Explanation:

given,                            

Force on the object = 10 N

distance of push = 5 m

Work done = ?              

we know,              

work done is equal to Force into displacement.

W = F . s            

W = 10 x 5              

W = 50 J                

Work done by the object when 10 N force is applied is equal to 50 J

Hence, the correct answer is option C

Final answer:

The work done on an object when a force of 10 N pushes it 5 m is 50 Joules, calculated by multiplying the force and the displacement. So, the correct option is C.

Explanation:

The question is asking about work, which in physics is the result of a force causing a displacement. The formula for work is defined as the product of the force (in Newtons) and the displacement (in meters) the force causes. If a force of 10 N pushes an object a distance of 5 m, the work done is calculated by multiplying the force and the displacement (10 N * 5 m), yielding 50 Joules of work.

Therefore, the correct answer is 50 J (C).

Learn more about Work here:

brainly.com/question/31965083

#SPJ6