While the block hovers in place, is the density of the block (top left) or the density of the liquid (bottom center) greater?

Answers

Answer 1
Answer:

Answer:

for the body to float, the density of the body must be less than or equal to the density of the liquid.

Explanation:

For a block to float in a liquid, the thrust of the liquid must be greater than or equal to the weight of the block.

Weight is

        W = mg

let's use the concept of density

        ρ_body = m / V

        m = ρ_body V

        W = ρ_body V g

The thrust of the body is given by Archimedes' law

        B = ρ_liquid g V_liquid

 

as the body floats the submerged volume of the liquid is less than or equal to the volume of the block

       ρ_body V g = ρ_liquid g V_liquid

     

       ρ_body = ρ liquid Vliquido / V_body

As we can see, for the body to float, the density of the body must be less than or equal to the density of the liquid.


Related Questions

A proton is at the origin and an electron is at the point x = 0.36 nm , y = 0.39 nm . Find the electric force on the proton.Express your answer using two significant figures. Enter your answers numerically separated by a comma.
A water slide is constructed so that swimmers, starting from rest at the top of the slide, leave the end of the slide traveling horizontally. One person hits the water 5.00 m from the end of the slide in a time of 0.504 s after leaving the slide. Ignore friction and air resistance. Find the height H.
What are the density, specific gravity and mass of the air in a room whose dimensions are 4 m * 6 m * 8 m at 100 kPa and 25 C.
g During a collision with a wall, the velocity of a 0.4 KgKg ball changes from 25 m/sm/s towards the vall to 12 m/sm/s away from the wall. If the time the ball was in contact with the call was 0.5 secsec , what was the magnitude of the avarage force applied to the ball
Determine the tension in the string that connects M2 and M3.

Please helpa car is driven 200 km west and then 80 km southwest. what is the displacement of the car from the point of orgin (magnitude and direction)? draw a diagram. ​

Answers

Let's take east and west to be positive and negative, respectively, and north and south to be positive and negative, respectively. Then in terms of vectors (using ijk notation), the car first moves 200 km west,

r = (-200 km) j

then 80 km southwest,

s = (-80/√2 km) i + (-80/√2 km) j

so that its total displacement is

r + s = (-80/√2 km) i + ((-200 - 80/√2) km) j

r + s ≈ (-56.6 km) i + (-256.6 km) j

This vector has magnitude

√((-56.6 km)² + (-256.6 km)²) ≈ 262.7 km

and direction θ such that

tan(θ) = (-256.6 km) / (-56.6 km)  ==>  θ ≈ -102.4º

relative to east, or about 12.4º west of south.

A turntable with a rotational inertia of 0.0120 kg∙m2 rotates freely at 2.00 rad/s. A circular disk of mass 200 g and radius 30.0 cm, and initially not rotating, slips down a spindle and lands on the turntable. (a) Find the new angular velocity. (b) What is the change in kinetic energy?

Answers

To solve this problem it is necessary to apply the related concepts to the moment of inertia in a disk, the conservation of angular momentum and the kinematic energy equations for rotational movement.

PART A) By definition we know that the moment of inertia of a disk is given by the equation

I = (1)/(2) MR^2

Where

M = Mass of the disk

R = Radius

Replacing with our values we have

I = (1)/(2) (0.2)(0.3)^2

I = 9*10^(-3)kg\cdot m^2

The initial angular momentum then will be given as

I = I_1 \omega_1

I = 0.012*2

I = 0.024kg\cdot m^2/s

Therefore the total moment of inertia of the table and the disc will be

I_2 = 9*10^(-3)+0.012

I_2 = 0.021kg\cdot m^2

The angular velocity at the end point will be given through the conservation of the angular momentum for which it is understood that the proportion of inertia and angular velocity must be preserved. So

I_1 \omega_1 = I_2\omega_2

(0.012)(2)=(1.08*10^(-4))\omega_2

\omega_2 = (0.012*2)/(0.021)

\omega_2 = 1.15rad/s

Therefore the new angular velocity is 1.15rad/s

PART B) Through the conservation of rotational kinetic energy we can identify that its total change is subject to

\Delta KE = (1)/(2)I_1\omega_1^2-(1)/(2)I_2\omega^2

\Delta KE = (1)/(2)(I_1\omega_1^2-I_2\omega^2)

\Delta KE = (1)/(2)(0.024*2^2-0.021*1.15^2)

\Delta KE = 0.034J

Therefore the change in kinetic energy is 0.034J

The magnetic flux that passes through one turn of a 11-turn coil of wire changes to 5.60 from 9.69 Wb in a time of 0.0657 s. The average induced current in the coil is 297 A. What is the resistance of the wire?

Answers

Answer:

2.31 Ω

Explanation:

According to the Faraday's law of electromagnetic induction,

Induced emf = - N (dΦ/dt)

Emf = -N (ΔΦ/t)

where N = number of turns = 11

Φ = magnetic flux

ΔΦ = change in magnetic flux = 9.69 - 5.60 = 4.09 Wb

t = time taken for the change = 0.0657 s

Emf = 11(4.09/0.0657)

Emf = - 684.78 V (the minus sign indicates that the direction of the induced emf is opposite to the direction of change of magnetic flux)

From Ohm's law,

Emf = IR

R = (Emf)/I

I = current = 297 A

R = (684.78)/297

R = 2.31 Ω

Hope this Helps!!

Explanation:

Below is an attachment containing the solution.

When a 5.0 kg box is hung from a spring, the spring stretches to 50 mm beyond its relaxed length. (a) In an elevator accelerating upward at 2.0 m/s2 , how far does the spring stretch with the same box attached? (b) How fast and in which direction should the elevator accelerate for the spring stretch to be zero (that is, the spring returns to its relaxed length)?

Answers

The extension of the spring in the elevator is 60 mm.

For the extension of the spring to be zero, the elevator must be moving downwards under free fall.

The given parameters;

  • mass of the box, m = 5 kg
  • extension of the spring, x = 50 mm = 0.05 m

The spring constant is calculated as follows;

F = kx

mg = kx

k = (mg)/(x) \n\nk = (5 * 9.8)/(0.05) \n\nk = 980 \ N/m

The tension on the spring in an elevator accelerating upwards is calculated as follows;

T = mg + ma

T = m(g + a)

T = 5(9.8 + 2)

T = 59 N

The extension of the spring is calculated as follows;

T = kx\n\nx = (T)/(k) \n\nx = (59)/(980) \n\nx = 0.06 \ m\n\nx = 60 \ mm

For the extension of the spring to be zero, the elevator must be under free fall, such that the tension on the spring is zero.

For free fall, a = g

T = m(g - a) = 0

Learn more here:brainly.com/question/4404276

Answer:

a) the spring will stretch 60.19 mm with the same box attached as it accelerates upwards

b) spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²

Explanation:

Given that;

Gravitational acceleration g = 9.81 m/s²

Mass m = 5 kg

Extension of the spring X = 50 mm = 0.05 m

Spring constant k = ?

 we know that;

mg = kX  

5 × 9.81 = k(0.05)

k = 981 N/m

a)

Given that; Acceleration of the elevator a = 2 m/s² upwards

Extension of the spring in this situation = X1

Force exerted by the spring = F

we know that;

ma = F - mg

ma = kX1 - mg

we substitute

5 × 2 = 981 × X1 - (5 ×9.81 )

X1 = 0.06019 m

X1 = 60.19 mm

Therefore the spring  will stretch 60.19 mm with the same box attached as it accelerates upwards

B)

Acceleration of the elevator = a

The spring is relaxed i.e, it is not exerting any force on the box.

Only the weight force of the box is exerted on the box.

ma = mg

a = g

a = 9.81 m/s² downwards.

Therefore spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²

Information that is easily converted into numbers and is stored as a on and off signals is _____ information.

Answers

"Binary" information

Why is there so much more carbon dioxide in the atmosphere of Venus than in that of Earth? Why so much more carbon dioxide than on Mars?

Answers

Explanation:

The reason for the more concentration of carbon dioxide in the atmosphere of Venus than in the Earth -

On the Earth , most amount of the carbon dioxide is in the ocean water and in sea sediments .

Considering Venus , in the planet Venus , there is no Ocean water , hence , carbon dioxide can not get dissolved into the water , hence , it is found in the atmosphere .

So , the escape velocity for carbon dioxide on Mars is smaller than Venus .