A simple pendulum takes 2.20 s to make one compete swing. If we now triple the length, how long will it take for one complete swing?

Answers

Answer 1
Answer:

Answer:

Time taken for 1 swing = 3.81 second

Explanation:

Given:

Time taken for 1 swing = 2.20 Sec

Find:

Time taken for 1 swing , when triple the length(T2)

Computation:

Time taken for 1 swing = 2π[√l/g]

2.20 = 2π[√l/g].......Eq1

Time taken for 1 swing , when triple the length (3L)

Time taken for 1 swing = 2π[√3l/g].......Eq2

Squaring and dividing the eq(1) by (2)

4.84 / T2² = 1 / 3

T2 = 3.81 second

Time taken for 1 swing = 3.81 second


Related Questions

For a certain optical medium the speed of light varies from a low value of 1.80 × 10 8 m/s for violet light to a high value of 1.92 × 10 8 m/s for red light. Calculate the range of the index of refraction n of the material for visible light.
Which techniques can scientists use to determine the characteristics of Earth's layers? Select the two correct answers.examine the behavior of minerals at extremely low temperaturesstudy how seismic waves travel through different layersdrill deep mines to obtain samples from Earth's mantle and coreconduct experiments about how minerals change under high pressureuse X-rays to obtain a view of Earth's interior layers
What is the kinetic energy k of an electron with momentum 1.05×10−24 kilogram meters per second?
When you walk at an average speed (constant speed, no acceleration) of 24 m/s in 94.1 secyou will cover a distance of__?
Last night, Shirley worked on her accounting homework for one and one half hours. During that time, she completed 6 problems. What is the velocity in problems per hour? a. 6 per hour b. 4 per hour c. 10 per hour d. 0.67 per hour e. 15 per hour

Part of your electrical load is a 60-W light that is on continuously. By what percentage can your energy consumption be reduced by turning this light off

Answers

Answer:

Following are the solution to the given question:

Explanation:

Please find the complete question in the attached file.

The cost after 30 days is 60 dollars. As energy remains constant, the cost per hour over 30 days will be decreased.

\to (\$60)/((30 \ days)/(24\ hours)) = \$0.08 / kwh.

Thus, (\$0.08)/(\$0.12) = 0.694 \ kW *  0.694 \ kW  * 1000 = 694 \ W.

The electricity used is continuously 694W over 30 days.

If just resistor loads (no reagents) were assumed,

\to I = (P)/(V)= (694\ W)/(120\ V) = 5.78\ A

Energy usage reduction percentage = ((60\ W)/(694\ W) * 100\%)

This bulb accounts for 8.64\% of the energy used, hence it saves when you switch it off.

A celestial body moving in an ellipical orbit around a star

Answers

A celestial body moving in an elliptical orbit around a star is a planet.

Depending on its size, composition, and the eccentricity of its orbit, that scanty description could apply to a planet, an asteroid, a comet, a meteoroid, or another star.

An auto repair technician who specializes in the installation, troubleshooting, and repair of heating and air conditioning systems is called a/an A. passenger comfort specialist. B. maintenance and light repair (MLR) specialist. C. service manager. D. electrical system specialist.

Answers

c is the correct answer

B is correct because I know it is :)

A boat can travel in still water at 56 m/s. If the boats sails directly across a river that flows at 126 m/s. What is the boats speed relative to the ground

Answers

Answer:

The answer is below

Explanation:

The speed of the boat in still water is perpendicular to the speed of the water flow. Therefore the speed relative to the ground (V), the speed of flow and the speed of the boat in still water form a right angled triangle. Hence the speed relative to the ground is given as:

V² = 56² + 126²

V² = 19012

V = 137.9 m/s

What is the force of gravity acting on a 1-kg m mass? (g = 9.8 m/s ^ 2)

Answers

Answer: Use this F=Ma.

Explanation: So your answer will be

F=1 Kg+9.8 ms-2

So the answer will be

F=9.8N

How'd I do this?

I just used Newton's second law of motion.

I'll also put the derivation just in case.

Applied force α (Not its alpha, proportionality symbol) change in momentum

Δp α p final- p initial

Δp α mv-mu (v=final velocity, u=initial velocity and p=v*m)

or then

F α m(v-u)/t

So, as we know v=final velocity & u= initial velocity and v-u/t =a.

So F α ma, we now remove the proportionality symbol so we'll add a proportionality constant to make the RHS & LHS equal.

So, F=kma (where k is the proportionality constant)

k is 1 so you can ignore it.

So, our equation becomes F=ma

Which of the following is not a risk associated with using legal drugs without medical supervision

Answers

Answer:

paying too much on the black market instead of getting a prescription

Explanation:

i just took the quiz

Answer:

Paying too much on the black market instead of getting a prescription

Explanation:

The rest of the options are risks associated with using legal drugs without medical supervision.

Other Questions